Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul W. Tooley is active.

Publication


Featured researches published by Paul W. Tooley.


Mycologia | 2003

Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes

Frank N. Martin; Paul W. Tooley

The phylogenetic relationships of 51 isolates representing 27 species of Phytophthora were assessed by sequence alignment of 568 bp of the mitochondrially encoded cytochrome oxidase II gene. A total of 1299 bp of the cytochrome oxidase I gene also were examined for a subset of 13 species. The cox II gene trees constructed by a heuristic search, based on maximum parsimony for a bootstrap 50% majority-rule consensus tree, revealed 18 species grouping into seven clades and nine species unaffiliated with a specific clade. The phylogenetic relationships among species observed on cox II gene trees did not exhibit consistent similarities in groupings for morphology, pathogenicity, host range or temperature optima. The topology of cox I gene trees, constructed by a heuristic search based on maximum parsimony for a bootstrap 50% majority-rule consensus tree for 13 species of Phytophthora, revealed 10 species grouping into three clades and three species unaffiliated with a specific clade. The groupings in general agreed with what was observed in the cox II tree. Species relationships observed for the cox II gene tree were in agreement with those based on ITS regions, with several notable exceptions. Some of these differences were noted in species in which the same isolates were used for both ITS and cox II analysis, suggesting either a differential rate of evolutionary divergence for these two regions or incorrect assumptions about alignment of ITS sequences. Analysis of combined data sets of ITS and cox II sequences generated a tree that did not differ substantially from analysis of ITS data alone, however, the results of a partition homogeneity test suggest that combining data sets may not be valid.


Phytopathology | 2000

Enhanced Polymerase Chain Reaction Methods for Detecting and Quantifying Phytophthora infestans in Plants

Howard S. Judelson; Paul W. Tooley

ABSTRACT Sensitive and specific primer sets for polymerase chain reaction (PCR) for Phytophthora infestans, the oomycete that causes late blight of potato and tomato, were developed based on families of highly repeated DNA. The performance of these primers was compared to those developed previously for the internal transcribed spacer (ITS) of ribosomal DNA. The detection limit using the new primers is 10 fg of P. infestans DNA, or 0.02 nuclei. This is about 100 times more sensitive than ITS-directed primers. Nested polymerase chain reaction (PCR) allows the measurement of down to 0.1 fg of DNA using the new primers. To enhance the reliability of diagnostic assays, an internal positive control was developed using an amplification mimic. The mimic also served as a competitor for quantitative PCR, which was used to assess the growth of P. infestans in resistant and susceptible tomato. A key dimension of this study was that two laboratories independently checked the specificity and sensitivity of each primer set; differences were noted that should be considered when PCR is adopted for diagnostic applications in any system.


Phytopathology | 2004

Molecular Detection of Phytophthora ramorum, the Causal Agent of Sudden Oak Death in California, and Two Additional Species Commonly Recovered from Diseased Plant Material.

Frank N. Martin; Paul W. Tooley; Cheryl Blomquist

ABSTRACT Sudden oak death is a disease currently devastating forest ecosystems in several coastal areas of California. The pathogen causing this is Phy-tophthora ramorum, although species such as P. nemorosa and P. pseudo-syringae often are recovered from symptomatic plants as well. A molecular marker system was developed based on mitochondrial sequences of the cox I and II genes for detection of Phytophthora spp. in general, and P. ramorum, P. nemorosa, and P. pseudosyringae in particular. The first-round multiplex amplification contained two primer pairs, one for amplification of plant sequences to serve as an internal control to ensure that extracted DNA was of sufficient quality to allow for polymerase chain reaction (PCR) amplification and the other specific for amplification of sequences from Phytophthora spp. The plant primers amplified the desired amplicon size in the 29 plant species tested and did not interfere with amplification by the Phytophthora genus-specific primer pair. Using DNA from purified cultures, the Phytophthora genus-specific primer pair amplified a fragment diagnostic for the genus from all 45 Phytophthora spp. evaluated, although the efficiency of amplification was lower for P. lateralis and P. sojae than for the other species. The genus-specific primer pair did not amplify sequences from the 30 Pythium spp. tested or from 29 plant species, although occasional faint bands were observed for several additional plant species. With the exception of one plant species, the resulting amplicons were smaller than the Phytophthora genus-specific amplicon. The products of the first-round amplification were diluted and amplified with primer pairs nested within the genus-specific amplicon that were specific for either P. ramorum, P. nemorosa, or P. pseudo-syringae. These species-specific primers amplified the target sequence from all isolates of the pathogens under evaluation; for P. ramorum, this included 24 isolates from California, Germany, and the Netherlands. Using purified pathogen DNA, the limit of detection for P. ramorum using this marker system was approximately 2.0 fg of total DNA. However, when this DNA was spiked with DNA from healthy plant tissue extracted with a commercial miniprep procedure, the sensitivity of detection was reduced by 100- to 1,000-fold, depending on the plant species. This marker system was validated with DNA extracted from naturally infected plant samples collected from the field by comparing the sequence of the Phytophthora genus-specific amplicon, morphological identification of cultures recovered from the same lesions and, for P. ramorum, amplification with a previously published rDNA internal transcribed spacer species-specific primer pair. Results were compared and validated with three different brands of thermal cyclers in two different laboratories to provide information about how the described PCR assay performs under different laboratory conditions. The specificity of the Phytophthora genus-specific primers suggests that they will have utility for pathogen detection in other Phytophthora pathosystems.


Experimental Mycology | 1987

Cytophotometric determination of the nuclear DNA content of 23 Mexican and 18 non-Mexican isolates ofPhytophthora infestans

Paul W. Tooley; C. Dale Therrien

The nuclear DNA content of zoospores ofPhytophthora infestans was determined by Feulgen cytophotometry. Isolates from Mexico, where the sexual stage of the fungus is common, were compared with isolates from the United States and Europe. The mean nuclear DNA content of 23 Mexican isolates was 0.59 arbitrary units (a.u.; range, 0.48–0.79), while that of 18 non-Mexican isolates was 0.92 a.u. (range, 0.56–1.11). Mexican isolates are very likely diploid, as indicated by cytological studies of other workers. The non-Mexican group, by contrast, appears to include isolates that are diploid, triploid, tetraploid, and aneuploid. Of three non-Mexican isolates with DNA contents similar to those of the Mexican isolates (apparent diploids), two originated from Southern California and may be of recent Mexican origin.


Fungal Biology | 2003

Phylogenetic relationships of Phytophthora ramorum, P. nemorosa, and P. pseudosyringae, three species recovered from areas in California with sudden oak death

Frank N. Martin; Paul W. Tooley

Sudden oak death has been an emerging disease problem in coastal California and has caused significant losses in forest ecosystems in some regions of the state. The causal agent of this disease has been described as Phytophthora ramorum with two other less aggressive species, P. nemorosa and P. pseudosyringae, recovered from some symptomatic plants. The phylogenetic relationship of these species with other members of the genus was examined by sequence alignment of 667 bp of the mitochondrially-encoded cytochrome oxidase II gene and the nuclear encoded rDNA internal transcribed spacer region. P. ramorum was most closely related to P. hibernalis and P. lateralis in trees from both regions, although the specific relationship among species differed depending on the tree. In the cox II tree these species were on a single clade with P. lateralis basal to a group containing P. ramorum and P. hibernalis. On the maximum parsimony ITS tree P. ramorum was most closely affiliated with P. lateralis and in the same clade as P. hibernalis, but with maximum likelihood analysis P. ramorum was basal to a grouping of P. hibernalis and P. lateralis. While bootstrap support was strong for the grouping of these species together, it was not for determining the relationship among them. In contrast to the cox II tree, the clade containing these three species grouped with P. cryptogea, P. drechsleri, P. erythroseptica, and P. syringae in the ITS tree. Since the same isolates of these species were used for both the cox II and ITS sequence analysis, this difference in species grouping suggests either a differential rate of evolutionary divergence for these two regions, incorrect assumptions about alignment of ITS sequences, or different evolutionary histories of the regions under study. Analysis of combined cox II and ITS data sets gave trees where the relationships among these species were the same as for the ITS tree alone, although the results of the partition homogeneity test (P=0.072) suggest caution should be used in interpretation of this data. All analyses supported a close relationship between P. ilicis, P. nemorosa and P. pseudosyringae, although the analysis did not clarify the evolutionary relationships among these three species. Interestingly, these three species had a unique 6 bp deletion in the cox II gene just before the termination codon. While there was some similarity in phylogenetic grouping of these species and morphological characteristics, this was not consistent across all comparisons in the genus. Data would suggest that P. ramorum, P. nemorosa and P. pseudosyringae are phylogenetically distinct new species and not the result of interspecific hybridization.


Plant Disease | 2004

Susceptibility of Selected Ericaceous Ornamental Host Species to Phytophthora ramorum

Paul W. Tooley; K. L. Kyde; L. Englander

We assessed disease reactions of 51 species or varieties of ericaceous ornamental hosts to two isolates of Phytophthora ramorum, the causal agent of sudden oak death. Inoculation was performed with an A2 mating type U.S. isolate from rhododendron and the P. ramorum type culture of A1 mating type from Germany. For only one host were statistically significant differences in disease observed between the two isolates. Several different inoculation methods were compared. The 51 hosts tested varied widely in susceptibility, ranging from 0% to over 90% leaf area infected. Two cultivars of Vaccinium macrocarpon (cranberry) showed no disease, while three cultivars of Kalmia latifolia (mountain laurel) were all highly susceptible. The results indicate that many ornamental hosts grown in the United States are susceptible to P. ramorum under artificial inoculation conditions. Inoculum density studies with two susceptible host species showed that P. ramorum is capable of producing disease symptoms over sporangium concentrations ranging from 100 to 5,000 sporangia per ml. Mean numbers of chlamydospores forming in host tissue of 21 hosts ranged from 2 to over 900 chlamydospores per 6-mm-diameter leaf disk. Whether hosts showing susceptiblity under the experimental conditions used in this study would become infected with P. ramorum in the presence of inoculum under natural conditions is unknown.


Phytopathology | 2009

Standardizing the Nomenclature for Clonal Lineages of the Sudden Oak Death Pathogen, Phytophthora ramorum

Niklaus J. Grünwald; Erica M. Goss; Kelly Ivors; Matteo Garbelotto; Frank N. Martin; Simone Prospero; Everett Hansen; P.J.M. Bonants; Richard C. Hamelin; Gary Chastagner; Sabine Werres; David M. Rizzo; Gloria Abad; P. A. Beales; Guillaume J. Bilodeau; C. L. Blomquist; Clive M. Brasier; Stephan C. Brière; Anne Chandelier; Jennifer M. Davidson; Sandra Denman; Marianne Elliott; Susan J. Frankel; Ellen Michaels Goheen; Hans de Gruyter; Kurt Heungens; Delano James; Alan Kanaskie; Michael McWilliams; Eduardo Moralejo

Phytophthora ramorum, the causal agent of sudden oak death and ramorum blight, is known to exist as three distinct clonal lineages which can only be distinguished by performing molecular marker-based analyses. However, in the recent literature there exists no consensus on naming of these lineages. Here we propose a system for naming clonal lineages of P. ramorum based on a consensus established by the P. ramorum research community. Clonal lineages are named with a two letter identifier for the continent on which they were first found (e.g., NA = North America; EU = Europe) followed by a number indicating order of appearance. Clonal lineages known to date are designated NA1 (mating type: A2; distribution: North America; environment: forest and nurseries), NA2 (A2; North America; nurseries), and EU1 (predominantly A1, rarely A2; Europe and North America; nurseries and gardens). It is expected that novel lineages or new variants within the existing three clonal lineages could in time emerge.


Phytopathology | 2007

Genetic and Morphological Diversity of Temperate and Tropical Isolates of Phytophthora capsici.

J. H. Bowers; F. N. Martin; Paul W. Tooley

ABSTRACT Phytophthora capsici is a diverse species causing disease on a broad range of both temperate and tropical plants. In this study, we used cultural characteristics, amplified fragment length polymorphism (AFLP), and DNA sequence analyses of the ribosomal internal transcribed spacer (ITS) region and mitochondrial cytochrome oxidase II (cox II) genes to characterize temperate and tropical isolates from a wide range of host species. All but one temperate isolate grew at 35 degrees C, while all tropical isolates did not. All but two tropical isolates formed chlamydospores, while temperate isolates did not. There was strong bootstrap support for separation of temperate and tropical isolates using AFLP analysis; however, the temperate isolates appeared as a subgroup within the observed variation of the tropical isolates. The majority of temperate isolates clustered within a single clade with low variation regardless of host or geographical origin, while the tropical isolates were more variable and grouped into three distinct clades. Two clades of tropical isolates grouped together and were affiliated closely with the temperate isolates, while the third tropical clade was more distantly related. Phylogenetic analysis of the ITS regions resulted in similar groupings and variation within and between the temperate and tropical isolates as with the AFLP results. Sequence divergence among isolates and clades was low, with more variation within the tropical isolates than within the temperate isolates. Analysis of other species revealed shorter branch lengths separating temperate and tropical isolates than were observed in comparisons among other phylogenetically closely related species in the genus. Analysis of cox II sequence data was less clear. Although the temperate and tropical isolates grouped together apart from other species, there was no bootstrap support for separating these isolates. Restriction fragment length polymorphism (RFLP) analysis of the ITS regions separated the temperate and tropical isolates, as in the AFLP and ITS phylogenetic analyses. However, RFLP analysis of the cox I and II gene cluster did not distinguish between temperate and tropical isolates. The differences in grouping of isolates in these two RFLP studies should be helpful in identifying isolate subgroups. Our data do not fully clarify whether or not temperate and tropical isolates should be separated into different species. The available worldwide data are incomplete and the full range of variation in the species is not yet known. We suggest refraining from using the epithet P. tropicalis until more data are available.


Plant Disease | 2007

Susceptibility of Some Eastern Forest Species to Phytophthora ramorum

Paul W. Tooley; Kerrie L. Kyde

We tested some common Eastern forest species for their reaction to stem and leaf inoculation with Phytophthora ramorum, the pathogen that causes sudden oak death. Stem lesions were produced on inoculated seedlings of 12 Eastern forest species following 72 to 76 days of incubation in a containment greenhouse cubicle at 20°C. Chestnut oak (Quercus prinus) and white oak (Q. alba) were followed by northern red oak (Q. rubra) in susceptibility to stem inoculation. Sugar maple (Acer saccharum) and black walnut (Juglans nigra) were more resistant to stem inoculation than most of the oak species tested. P. ramorum was isolated on selective medium at distances of up to 8 mm from stem lesion margins. Foliar lesions were observed within 7 days when seedlings were inoculated with 5,000 sporangia/ml followed by incubation at 20°C in a dew chamber. Chestnut oak was followed by tanoak (Lithocarpus densiflorus) and coast live oak (Q. agrifolia) in susceptibility to P. ramorum by foliar inoculation. Chestnut oak, an ecologically important species in parts of the Eastern United States, emerged as the most susceptible host tested in both stem and foliar inoculations. The results indicate that, under controlled conditions, P. ramorum is able to infect some important Eastern forest species and cause lesions on stems and foliage. It remains to be determined whether infection of these species by P. ramorum would occur under natural conditions.


Fungal Biology | 2005

NEP1 orthologs encoding necrosis and ethylene inducing proteins exist as a multigene family in Phytophthora megakarya , causal agent of black pod disease on cacao

Hanhong Bae; John H. Bowers; Paul W. Tooley; Bryan A. Bailey

Phvytophthora megakarya is a devastating oomycete pathogen that causes black pod disease in cacao. Phytophthora species produce a protein that has a similar sequence to the necrosis and ethylene inducing protein (Nep1) of Fusarium oxysporum. Multiple copies of NEP1 orthologs (PmegNEP) have been identified in P. megakarya and four other Phytophthora species (P. citrophthora, P. capsici, P. palmivora, and P. sojae). Genome database searches confirmed the existence of multiple copies of NEP1 orthologs in P. sojae and P. ramorum. In this study, nine different PmegNEP orthologs from P. megakarya strain Mk-1 were identified and analyzed. Of these nine orthologs, six were expressed in mycelium and in P. megakarya zoospore-infected cacao leaf tissue. The remaining two clones are either regulated differently, or are nonfunctional genes. Sequence analysis revealed that six PmegNEP orthologs were organized in two clusters of three orthologs each in the P. megakarya genome. Evidence is presented for the instability in the P. megakarya genome resulting from duplications, inversions, and fused genes resulting in multiple NEP1 orthologs. Traits characteristic of the Phytophthora genome, such as the clustering of NEP1 orthologs, the lack of CATT and TATA boxes, the lack of introns, and the short distance between ORFs were also observed.

Collaboration


Dive into the Paul W. Tooley's collaboration.

Top Co-Authors

Avatar

Marsha Browning

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Marie M. Carras

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Ranajit Bandyopadhyay

International Institute of Tropical Agriculture

View shared research outputs
Top Co-Authors

Avatar

Frank N. Martin

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. K. Berner

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Gary L. Peterson

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

M. R. Bonde

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Norman W. Schaad

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Xiuguo Zhang

Shandong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge