Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul W. Wiseman is active.

Publication


Featured researches published by Paul W. Wiseman.


Biophysical Journal | 1993

Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application

Nils O. Petersen; P.L. Höddelius; Paul W. Wiseman; O. Seger; K.E. Magnusson

Measurement of receptor distributions on cell surfaces is one important aspect of understanding the mechanism whereby receptors function. In recent years, scanning fluorescence correlation spectroscopy has emerged as an excellent tool for making quantitative measurements of cluster sizes and densities. However, the measurements are slow and usually require fixed preparations. Moreover, while the precision is good, the accuracy is limited by the relatively small amount of information in each measurement, such that many are required. Here we present a novel extension of the scanning correlation spectroscopy that solves a number of the present problems. The new technique, which we call image correlation spectroscopy, is based on quantitative analysis of confocal scanning laser microscopy images. Since these can be generated in a matter of a second or so, the measurements become more rapid. The image is collected over a large cell area so that more sampling is done, improving the accuracy. The sacrifice is a lower resolution in the sampling, which leads to a lower precision. This compromise of precision in favor of speed and accuracy still provides an enormous advantage for image correlation spectroscopy over scanning correlation spectroscopy. The present work demonstrates the underlying theory, showing how the principles can be applied to measurements on standard fluorescent beads and changes in distribution of receptors for platelet-derived growth factor on human foreskin fibroblasts.


Neuron | 2010

CaMKII Triggers the Diffusional Trapping of Surface AMPARs through Phosphorylation of Stargazin

Patricio Opazo; Simon Labrecque; Cezar Tigaret; Arnaud Frouin; Paul W. Wiseman; Paul De Koninck; Daniel Choquet

The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is critically required for the synaptic recruitment of AMPA-type glutamate receptors (AMPARs) during both development and plasticity. However, the underlying mechanism is unknown. Using single-particle tracking of AMPARs, we show that CaMKII activation and postsynaptic translocation induce the synaptic trapping of AMPARs diffusing in the membrane. AMPAR immobilization requires both phosphorylation of the auxiliary subunit Stargazin and its binding to PDZ domain scaffolds. It does not depend on the PDZ binding domain of GluA1 AMPAR subunit nor its phosphorylation at Ser831. Finally, CaMKII-dependent AMPAR immobilization regulates short-term plasticity. Thus, NMDA-dependent Ca(2+) influx in the post-synapse triggers a CaMKII- and Stargazin-dependent decrease in AMPAR diffusional exchange at synapses that controls synaptic function.


Cell Biochemistry and Biophysics | 2007

Advances in Image Correlation Spectroscopy: Measuring Number Densities, Aggregation States, and Dynamics of Fluorescently labeled Macromolecules in Cells

David L. Kolin; Paul W. Wiseman

A brief historical outline of fluorescence fluctuation correlation techniques is presented, followed by an in-depth review of the theory and development of image correlation techniques, including: image correlation spectroscopy (ICS), temporal ICS (TICS), image cross-correlation spectroscopy (ICCS), spatiotemporal ICS (STICS), k-space ICS (kICS), raster ICS (RICS), and particle ICS (PICS). These techniques can be applied to analyze image series acquired on commercially available laser scanning or total internal reflection fluorescence microscopes, and are used to determine the number density, aggregation state, diffusion coefficient, velocity, and interaction fraction of fluorescently labeled molecules or particles. A comprehensive review of the application of ICS techniques to a number of systems, including cell adhesion, membrane receptor aggregation and dynamics, virus particle fusion, and fluorophore photophysics, is presented.


Journal of Cell Science | 2004

Spatial mapping of integrin interactions and dynamics during cell migration by Image Correlation Microscopy

Paul W. Wiseman; Claire M. Brown; Donna J. Webb; Benedict Hebert; Natalie L. Johnson; Jeff Squier; Mark H. Ellisman; Alan F. Horwitz

Image correlation microscopy methodology was extended and used to determine retrospectively the density, dynamics and interactions of α5-integrin in migrating cells. α5-integrin is present in submicroscopic clusters containing 3-4 integrins before it is discernibly organized. The integrin in nascent adhesions, as identified by the presence of paxillin, is ∼1.4 times more concentrated, ∼4.5 times more clustered and much less mobile than in surrounding regions. Thus, while integrins are clustered throughout the cell, they differ in nascent adhesions and appear to initiate adhesion formation, despite their lack of visible organization. In more mature adhesions where the integrin is visibly organized there are ∼900 integrins μm–2 (about fivefold higher than surrounding regions). Interestingly, α5-integrin and α-actinin, but not paxillin, reside in a complex throughout the cell, where they diffuse and flow together, even in regions where they are not organized. During adhesion disassembly some integrins diffuse away slowly, α-actinin undergoes a directed movement at speeds similar to actin retrograde flow (0.29 μm min–1), while all of the paxillin diffuses away rapidly.


Journal of Cell Biology | 2007

Actin–myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility

Patricia T. Yam; Cyrus A. Wilson; Lin Ji; Benedict Hebert; Erin L. Barnhart; Natalie A. Dye; Paul W. Wiseman; Gaudenz Danuser; Julie A. Theriot

We have analyzed the spontaneous symmetry breaking and initiation of actin-based motility in keratocytes (fish epithelial cells). In stationary keratocytes, the actin network flow was inwards and radially symmetric. Immediately before motility initiation, the actin network flow increased at the prospective cell rear and reoriented in the perinuclear region, aligning with the prospective axis of movement. Changes in actin network flow at the cell front were detectable only after cell polarization. Inhibition of myosin II or Rho kinase disrupted actin network organization and flow in the perinuclear region and decreased the motility initiation frequency, whereas increasing myosin II activity with calyculin A increased the motility initiation frequency. Local stimulation of myosin activity in stationary cells by the local application of calyculin A induced directed motility initiation away from the site of stimulation. Together, these results indicate that large-scale actin–myosin network reorganization and contractility at the cell rear initiate spontaneous symmetry breaking and polarized motility of keratocytes.


Journal of Microscopy | 2000

Two-photon image correlation spectroscopy and image cross-correlation spectroscopy

Paul W. Wiseman; J. Squier; Mark H. Ellisman; Kent R. Wilson

We introduce two‐photon image correlation spectroscopy (ICS) using a video rate capable multiphoton microscope. We demonstrate how video rate two‐photon microscopic imaging and image correlation analysis may be combined to measure molecular transport properties over ranges typical of biomolecules in membrane environments. Using two‐photon ICS, we measured diffusion coefficients as large as 10−8 cm2 s−1 that matched theoretical predictions for samples of fluorescent microspheres suspended in aqueous sucrose solutions. We also show the sensitivity of the method for measuring microscopic flow using analogous test samples. We demonstrate explicitly the advantages of the image correlation approach for measurement of correlation functions with high signal‐to‐noise in relatively short time periods and discuss situations when these methods represent improvements over non‐imaging fluorescence correlation spectroscopy. We present the first demonstration of two‐photon image cross‐correlation spectroscopy where we simultaneously excite (via two‐photon absorption) non‐identical fluorophores with a single pulsed laser. We also demonstrate cellular application of two‐photon ICS for measurements of slow diffusion of green fluorescent protein/adhesion receptor constructs within the basal membrane of live CHO fibroblast cells.


Journal of Cell Science | 2006

Probing the integrin-actin linkage using high-resolution protein velocity mapping.

Claire M. Brown; Benedict Hebert; David L. Kolin; Jessica Zareno; Leanna Whitmore; Alan Rick Horwitz; Paul W. Wiseman

Cell migration is regulated in part by the connection between the substratum and the actin cytoskeleton. However, the very large number of proteins involved in this linkage and their complex network of interactions make it difficult to assess their role in cell migration. We apply a novel image analysis tool, spatio-temporal image correlation spectroscopy (STICS), to quantify the directed movements of adhesion-related proteins and actin in protrusions of migrating cells. The STICS technique reveals protein dynamics even when protein densities are very low or very high, and works in the presence of large, static molecular complexes. Detailed protein velocity maps for actin and the adhesion-related proteins α-actinin, α5-integrin, talin, paxillin, vinculin and focal adhesion kinase are presented. The data show that there are differences in the efficiency of the linkage between integrin and actin among different cell types and on the same cell type grown on different substrate densities. We identify potential mechanisms that regulate efficiency of the linkage, or clutch, and identify two likely points of disconnect, one at the integrin and the other at α-actinin or actin. The data suggests that the efficiency of the linkage increases as actin and adhesions become more organized showing the importance of factors that regulate the efficiency in adhesion signaling and dynamics.


Nature Cell Biology | 2011

Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component

Viola Baumgärtel; Sergey Ivanchenko; Aurélie Dupont; Mikhail Sergeev; Paul W. Wiseman; Hans-Georg Kräusslich; Christoph Bräuchle; Barbara Müller; Don C. Lamb

HIV (human immunodeficiency virus) diverts the cellular ESCRT (endosomal sorting complex required for transport) machinery to promote virion release from infected cells. The ESCRT consists of four heteromeric complexes (ESCRT-0 to ESCRT-III), which mediate different membrane abscission processes, most importantly formation of intralumenal vesicles at multivesicular bodies. The ATPase VPS4 (vacuolar protein sorting 4) acts at a late stage of ESCRT function, providing energy for ESCRT dissociation. Recruitment of ESCRT by late-domain motifs in the viral Gag polyprotein and a role of ESCRT in HIV release are firmly established, but the order of events, their kinetics and the mechanism of action of individual ESCRT components in HIV budding are unclear at present. Using live-cell imaging, we show late-domain-dependent recruitment of VPS4A to nascent HIV particles at the host cell plasma membrane. Recruitment of VPS4A was transient, resulting in a single or a few bursts of at least two to five VPS4 dodecamers assembling at HIV budding sites. Bursts lasted for ∼35 s and appeared with variable delay before particle release. These results indicate that VPS4A has a direct role in membrane scission leading to HIV-1 release.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Stoichiometry of molecular complexes at adhesions in living cells

Michelle A. Digman; Paul W. Wiseman; Colin K. Choi; Alan Rick Horwitz; Enrico Gratton

We describe a method to detect molecular complexes and measure their stoichiometry in living cells from simultaneous fluctuations of the fluorescence intensity in two image channels, each detecting a different kind of protein. The number and brightness (N&B) analysis, namely, the use of the ratio between the variance and the average intensity to obtain the brightness of molecules, is extended to the cross-variance of the intensity fluctuations in two channels. We apply the cross-variance method to determine the stoichiometry of complexes containing paxillin and vinculin or focal adhesion kinase (FAK) in disassembling adhesions in mouse embryo fibroblasts expressing FAK, vinculin, and paxillin-tagged with EGFP and mCherry. We found no complexes of these proteins in the cytoplasm away from the adhesions. However, at the adhesions, large aggregates leave, forming a hole, during their disassembly. This hole shows cross-correlation between FAK and paxillin and vinculin and paxillin. From the amplitude of the correlated fluctuations we determine the composition of the aggregates leaving the adhesions. These aggregates disassemble rapidly in the cytoplasm because large complexes are found only in very close proximity to the adhesions or at their borders.


Plant Physiology | 2008

Magnitude and Direction of Vesicle Dynamics in Growing Pollen Tubes Using Spatiotemporal Image Correlation Spectroscopy and Fluorescence Recovery after Photobleaching

Jérôme Bove; Benoit Vaillancourt; Jens Kroeger; Peter K. Hepler; Paul W. Wiseman; Anja Geitmann

The delivery of cell wall material and membrane to growing plant cell surfaces requires the spatial and temporal coordination of secretory vesicle trafficking. Given the small size of vesicles, their dynamics is difficult to quantify. To quantitatively analyze vesicle dynamics in growing pollen tubes labeled with the styryl dye FM1-43, we applied spatiotemporal correlation spectroscopy on time-lapse series obtained with high-speed confocal laser scanning microscopy recordings. The resulting vector maps revealed that vesicles migrate toward the apex in the cell cortex and that they accumulate in an annulus-shaped region adjacent to the extreme tip and then turn back to flow rearward in the center of the tube. Fluorescence recovery after photobleaching confirmed vesicle accumulation in the shoulder of the apex, and it revealed that the extreme apex never recovers full fluorescence intensity. This is consistent with endocytotic activity occurring in this region. Fluorescence recovery after photobleaching analysis also allowed us to measure the turnover rate of the apical vesicle population, which was significantly more rapid than the theoretical rate computed based on requirements for new cell wall material. This may indicate that a significant portion of the vesicles delivered to the apex does not succeed in contacting the plasma membrane for delivery of their contents. Therefore, we propose that more than one passage into the apex may be needed for many vesicles before they fuse to the plasma membrane and deliver their contents.

Collaboration


Dive into the Paul W. Wiseman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge