Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Walther is active.

Publication


Featured researches published by Paul Walther.


Cell Host & Microbe | 2009

Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites

Sonja Welsch; Sven Miller; Inés Romero-Brey; Andreas Merz; Christopher K.E. Bleck; Paul Walther; Stephen D. Fuller; Claude Antony; Jacomine Krijnse-Locker; Ralf Bartenschlager

Summary Positive-strand RNA viruses are known to rearrange cellular membranes to facilitate viral genome replication. The biogenesis and three-dimensional organization of these membranes and the link between replication and virus assembly sites is not fully clear. Using electron microscopy, we find Dengue virus (DENV)-induced vesicles, convoluted membranes, and virus particles to be endoplasmic reticulum (ER)-derived, and we detect double-stranded RNA, a presumed marker of RNA replication, inside virus-induced vesicles. Electron tomography (ET) shows DENV-induced membrane structures to be part of one ER-derived network. Furthermore, ET reveals vesicle pores that could enable release of newly synthesized viral RNA and reveals budding of DENV particles on ER membranes directly apposed to vesicle pores. Thus, DENV modifies ER membrane structure to promote replication and efficient encapsidation of the genome into progeny virus. This architecture of DENV replication and assembly sites could explain the coordination of distinct steps of the flavivirus replication cycle.


PLOS Pathogens | 2012

Three-Dimensional Architecture and Biogenesis of Membrane Structures Associated with Hepatitis C Virus Replication

Inés Romero-Brey; Andreas Merz; Abhilash I. Chiramel; Ji-Young Lee; Petr Chlanda; Uta Haselman; Rachel Santarella-Mellwig; Anja Habermann; Simone Hoppe; Stephanie Kallis; Paul Walther; Claude Antony; Jacomine Krijnse-Locker; Ralf Bartenschlager

All positive strand RNA viruses are known to replicate their genomes in close association with intracellular membranes. In case of the hepatitis C virus (HCV), a member of the family Flaviviridae, infected cells contain accumulations of vesicles forming a membranous web (MW) that is thought to be the site of viral RNA replication. However, little is known about the biogenesis and three-dimensional structure of the MW. In this study we used a combination of immunofluorescence- and electron microscopy (EM)-based methods to analyze the membranous structures induced by HCV in infected cells. We found that the MW is derived primarily from the endoplasmic reticulum (ER) and contains markers of rough ER as well as markers of early and late endosomes, COP vesicles, mitochondria and lipid droplets (LDs). The main constituents of the MW are single and double membrane vesicles (DMVs). The latter predominate and the kinetic of their appearance correlates with kinetics of viral RNA replication. DMVs are induced primarily by NS5A whereas NS4B induces single membrane vesicles arguing that MW formation requires the concerted action of several HCV replicase proteins. Three-dimensional reconstructions identify DMVs as protrusions from the ER membrane into the cytosol, frequently connected to the ER membrane via a neck-like structure. In addition, late in infection multi-membrane vesicles become evident, presumably as a result of a stress-induced reaction. Thus, the morphology of the membranous rearrangements induced in HCV-infected cells resemble those of the unrelated picorna-, corona- and arteriviruses, but are clearly distinct from those of the closely related flaviviruses. These results reveal unexpected similarities between HCV and distantly related positive-strand RNA viruses presumably reflecting similarities in cellular pathways exploited by these viruses to establish their membranous replication factories.


Nano Letters | 2008

Induction of Cell Polarization and Migration by a Gradient of Nanoscale Variations in Adhesive Ligand Spacing

Marco Arnold; Vera Catherine Hirschfeld-Warneken; Theobald Lohmüller; Patrick Heil; Jacques Blümmel; Elisabetta Ada Cavalcanti-Adam; Mónica López-García; Paul Walther; Horst Kessler; Benjamin Geiger; Joachim P. Spatz

Cell interactions with adhesive surfaces play a vital role in the regulation of cell proliferation, viability, and differentiation, and affect multiple biological processes. Since cell adhesion depends mainly on the nature and density of the adhesive ligand molecules, spatial molecular patterning, which enables the modulation of adhesion receptor clustering, might affect both the structural and the signaling activities of the adhesive interaction. We herein show that cells plated on surfaces that present a molecularly defined spacing gradient of an integrin RGD ligand can sense small but consistent differences in adhesive ligand spacing of about 1 nm across the cell diameter, which is approximately 61 mum when the spacing includes 70 nm. Consequently, these positional cues induce cell polarization and initiate cell migration and signaling. We propose that differential positional clustering of the integrin transmembrane receptors is used by cells for exploring and interpreting their environment, at high spatial sensitivity.


Nature Cell Biology | 2003

Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells

Michael Beil; Alexandre Micoulet; Götz von Wichert; Stephan Paschke; Paul Walther; M. Bishr Omary; Paul P. Van Veldhoven; Ulrike Gern; Elke Wolff-Hieber; Juliane Eggermann; Johannes Waltenberger; Guido Adler; Joachim P. Spatz; Thomas Seufferlein

Sphingosylphosphorylcholine (SPC) is a naturally occurring bioactive lipid that is present in high density lipoproteins (HDL) particles and found at increased levels in blood and malignant ascites of patients with ovarian cancer. Here, we show that incubation of human epithelial tumour cells with SPC induces a perinuclear reorganization of intact keratin 8–18 filaments. This effect is specific for SPC, largely independent of F-actin and microtubules, and is accompanied by keratin phosphorylation. In vivo visco-elastic probing of single cancer cells demonstrates that SPC increases cellular elasticity. Accordingly, SPC stimulates migration of cells through size-limited pores in a more potent manner than lysophosphatidic acid (LPA). LPA induces actin stress fibre formation, but does not reorganize keratins in cancer cells and hence increases cellular stiffness. We propose that reorganization of keratin by SPC may facilitate biological phenomena that require a high degree of elasticity, such as squeezing of cells through membranous pores during metastasis.


Journal of Microscopy | 2002

Freeze substitution of high-pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water

Paul Walther; Andreas Ziegler

Biological membranes are often poorly visible with the electron microscope after high‐pressure freezing and freeze‐substitution. The water content of the sample and of the substitution medium is one factor among others that strongly influences membrane visibility. In order to investigate this effect, high‐pressure frozen yeast cells, rat‐pancreas tissue and arthropod tissue were freeze‐substituted with and without adding water to the substitution medium. The visibility of the biological membranes was generally improved if the substitution medium contained 1–5% water. The effect was especially pronounced in yeast cells, where membrane visibility was poor after freeze‐substitution with water‐free medium but good after addition of 5% water to the substitution medium.


Macromolecular Bioscience | 2008

Uptake Mechanism of Oppositely Charged Fluorescent Nanoparticles in HeLa Cells

Julia Dausend; Anna Musyanovych; Martin Dass; Paul Walther; Hubert Schrezenmeier; Katharina Landfester; Volker Mailänder

The endocytotic mechanisms involved in the uptake of charged polystyrene nanoparticles into HeLa cells were investigated. Uptake experiments were done in the presence or absence of drugs known to inhibit various factors in endocytosis. Independent of the particle charge, endocytosis is highly dependent on dynamin, F-actin, and tyrosine-specific protein kinases, which suggests a dynamin-dependent and lipid raft-dependent mechanism. However, cholesterol depletion did not hinder particle uptake. Regarding positively charged particles, macropinocytosis, the microtubule network, and cyclooxygenases are also involved. The clathrin-dependent pathway plays a minor role.


Journal of Controlled Release | 1997

Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport

F. Dreher; Peter Walde; Paul Walther; Ernst Wehrli

A soybean lecithin microemulsion gel has been studied as a possible matrix for transdermal drug delivery. This gel is transparent and viscous, and it is composed of soybean phosphatidylcholine (lecithin), isopropyl palmitate and a small amount of water. In vitro percutaneous penetration studies of two anti-inflammatory drugs, indomethacin and diclofenac, dissolved in the gel-system resulted in steady state fluxes of about 1 μg h−1 cm−2. In order to estimate the function of the gel as a potential transdermal penetration enhancing system, interaction studies with isolated human stratum corneum were performed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) as well as low-temperature scanning electron microscopy. These studies indicated that the lecithin gel, in particular isopropyl palmitate, affects the stratum corneum lipid organization even after 1-day incubation (FTIR, DSC), whereas recent in vivo human skin irritation tests showed no significant irritancy.


Molecular Imaging and Biology | 2008

Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents

Volker Mailänder; Myriam Ricarda Lorenz; Verena Holzapfel; Anna Musyanovych; Karin Fuchs; Markus Wiesneth; Paul Walther; Katharina Landfester; Hubert Schrezenmeier

Cell labeling by superparamagnetic iron oxide particles (SPIO) has emerged as a potentially powerful tool to monitor trafficking of transplanted cells by magnetic resonance tomography, e.g., in studies for tissue repair. However, intracellular labeling is mostly achieved by transfection agents not approved for clinical use. In this work, the feasibility and efficiency of labeling human mesenchymal stem cells (MSC) and HeLa cells with two commercially available SPIOs (Resovist® and Feridex®) without transfection agents was evaluated. In both cell types, Resovist® without a transfection agent was more efficiently taken up than Feridex®. Increasing the concentration of Resovist® can yield similar amounts of iron in cells as SPIOs with transfection agents. This offers the opportunity to omit transfection agents from the labeling protocol when Resovist® is used. Intracellular localization of the contrast agents is found by light microscopy and confirmed by electron microscopy. Coagulation of the SPIO nanoparticles, which is problematic for the quantification of the intracellular iron content, was observed and analyzed with a fluorescent activated cell sorter. As Resovist® consists of a carboxydextran shell in contrast to Feridex® which is composed of a dextran shell, we synthesized fluorescent polymeric nanoparticles as model systems with different amounts of carboxyl groups on the surface by the miniemulsion process. A steady increase in uptake of nanoparticles was detected with a higher density of carboxyl groups showing the relevance of charged groups as in the case of Resovist®. Aggregation of these polymeric nanoparticles was not found.


Biomaterials | 2010

The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages

Oleg Lunov; Tatiana Syrovets; B. Büchele; Xiue Jiang; Carlheinz Röcker; Kyrylo Tron; Gerd Ulrich Nienhaus; Paul Walther; Volker Mailänder; Katharina Landfester; Thomas Simmet

Superparamagnetic iron oxide nanoparticles are frequently used for cell labeling or as diagnostic contrast media, yet studies analyzing their effects on immune cells remain scarce. Here we investigated how nanosized carboxydextran-coated superparamagnetic iron oxide (SPIO) and ultrasmall superparamagnetic iron oxide (USPIO) might affect human macrophages. Within 1 h, both SPIO and USPIO were rapidly taken up by macrophages. Confocal microscopy revealed that after 24 h the particles were almost exclusively localized within the lysosomal compartment. Continued cultivation of the macrophages for several days was associated with apoptosis induction caused by a long-lasting activation of the c-Jun N-terminal kinase (JNK) pathway. JNK activation was due to significantly elevated levels of reactive oxygen species, whereas no TNF-alpha was produced by the macrophages treated with nanoparticles. Compared to SPIO, USPIO induced more pronounced biochemical alterations and cytotoxicity, which could be antagonized by the JNK inhibitor V. Alternatively, treatment of macrophages with Trolox or N-acetyl-L-cysteine, two functionally different scavengers of reactive oxygen species, abolished both the JNK activation and the subsequent cytotoxic effects. These data indicate that nanosized superparamagnetic iron oxide-based contrast media exert cytotoxicity in human macrophages that can be functionally antagonized with radical scavengers.


Cell Host & Microbe | 2011

Peptides Released by Physiological Cleavage of Semen Coagulum Proteins Form Amyloids that Enhance HIV Infection

Nadia R. Roan; Janis A. Müller; Haichuan Liu; Simon Chu; Franziska Arnold; Christina M. Stürzel; Paul Walther; Ming Dong; H. Ewa Witkowska; Frank Kirchhoff; Jan Münch; Warner C. Greene

Semen serves as a vehicle for HIV and promotes sexual transmission of the virus, which accounts for the majority of new HIV cases. The major component of semen is the coagulum, a viscous structure composed predominantly of spermatozoa and semenogelin proteins. Due to the activity of the semen protease PSA, the coagulum is liquefied and semenogelins are cleaved into smaller fragments. Here, we report that a subset of these semenogelin fragments form amyloid fibrils that greatly enhance HIV infection. Like SEVI, another amyloid fibril previously identified in semen, the semenogelin fibrils exhibit a cationic surface and enhance HIV virion attachment and entry. Whereas semen samples from healthy individuals greatly enhance HIV infection, semenogelin-deficient semen samples from patients with ejaculatory duct obstruction are completely deficient in enhancing activity. Semen thus harbors distinct amyloidogenic peptides derived from different precursor proteins that commonly enhance HIV infection and likely contribute to HIV transmission.

Collaboration


Dive into the Paul Walther's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. López

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. de la Maza

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge