Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula A. Coelho is active.

Publication


Featured researches published by Paula A. Coelho.


Current Biology | 2001

A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis

Soren Steffensen; Paula A. Coelho; Neville Cobbe; Sharron Vass; Madalena Costa; Bassam Hassan; Sergei N. Prokopenko; Hugo J. Bellen; Margarete M. S. Heck; Claudio E. Sunkel

BACKGROUND Faithful segregation of the genome during mitosis requires interphase chromatin to be condensed into well-defined chromosomes. Chromosome condensation involves a multiprotein complex known as condensin that associates with chromatin early in prophase. Until now, genetic analysis of SMC subunits of the condensin complex in higher eukaryotic cells has not been performed, and consequently the detailed contribution of different subunits to the formation of mitotic chromosome morphology is poorly understood. RESULTS We show that the SMC4 subunit of condensin is encoded by the essential gluon locus in Drosophila. DmSMC4 contains all the conserved domains present in other members of the structural-maintenance-of-chromosomes protein family. DmSMC4 is both nuclear and cytoplasmic during interphase, concentrates on chromatin during prophase, and localizes to the axial chromosome core at metaphase and anaphase. During decondensation in telophase, most of the DmSMC4 leaves the chromosomes. An examination of gluon mutations indicates that SMC4 is required for chromosome condensation and segregation during different developmental stages. A detailed analysis of mitotic chromosome structure in mutant cells indicates that although the longitudinal axis can be shortened normally, sister chromatid resolution is strikingly disrupted. This phenotype then leads to severe chromosome segregation defects, chromosome breakage, and apoptosis. CONCLUSIONS Our results demonstrate that SMC4 is critically important for the resolution of sister chromatids during mitosis prior to anaphase onset.


Journal of Cell Science | 2003

Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis.

Paula A. Coelho; Joana Queiroz-Machado; Claudio E. Sunkel

Assembly of compact mitotic chromosomes and resolution of sister chromatids are two essential processes for the correct segregation of the genome during mitosis. Condensin, a five-subunit protein complex, is thought to be required for chromosome condensation. However, recent genetic analysis suggests that condensin is only essential to resolve sister chromatids. To study further the function of condensin we have depleted DmSMC4, a subunit of the complex, from Drosophila S2 cells by dsRNA-mediated interference. Cells lacking DmSMC4 assemble short mitotic chromosomes with unresolved sister chromatids where Barren, a non-SMC subunit of the complex is unable to localise. Topoisomerase II, however, binds mitotic chromatin after depletion of DmSMC4 but it is no longer confined to a central axial structure and becomes diffusely distributed all over the chromatin. Furthermore, cell extracts from DmSMC4 dsRNA-treated cells show significantly reduced topoisomerase II-dependent DNA decatenation activity in vitro. Nevertheless, DmSMC4-depleted chromosomes have centromeres and kinetochores that are able to segregate, although sister chromatid arms form extensive chromatin bridges during anaphase. These chromatin bridges do not result from inappropriate maintenance of sister chromatid cohesion by DRAD21, a subunit of the cohesin complex. Moreover, depletion of DmSMC4 prevents premature sister chromatid separation, caused by removal of DRAD21, allowing cells to exit mitosis with chromatin bridges. Our results suggest that condensin is required so that an axial chromatid structure can be organised where topoisomerase II can effectively promote sister chromatid resolution.


The EMBO Journal | 2011

RNA polymerase II kinetics in polo polyadenylation signal selection

Pedro A B Pinto; Telmo Henriques; Marta O Freitas; Torcato Martins; Rita G. Domingues; Paulina S Wyrzykowska; Paula A. Coelho; Alexandre M. Carmo; Claudio E. Sunkel; Nick J. Proudfoot; Alexandra Moreira

Regulated alternative polyadenylation is an important feature of gene expression, but how gene transcription rate affects this process remains to be investigated. polo is a cell‐cycle gene that uses two poly(A) signals in the 3′ untranslated region (UTR) to produce alternative messenger RNAs that differ in their 3′UTR length. Using a mutant Drosophila strain that has a lower transcriptional elongation rate, we show that transcription kinetics can determine alternative poly(A) site selection. The physiological consequences of incorrect polo poly(A) site choice are of vital importance; transgenic flies lacking the distal poly(A) signal cannot produce the longer transcript and die at the pupa stage due to a failure in the proliferation of the precursor cells of the abdomen, the histoblasts. This is due to the low translation efficiency of the shorter transcript produced by proximal poly(A) site usage. Our results show that correct polo poly(A) site selection functions to provide the correct levels of protein expression necessary for histoblast proliferation, and that the kinetics of RNA polymerase II have an important role in the mechanism of alternative polyadenylation.


Molecular and Cellular Biology | 2005

The Condensin I Subunit Barren/CAP-H Is Essential for the Structural Integrity of Centromeric Heterochromatin during Mitosis

Raquel A. Oliveira; Paula A. Coelho; Claudio E. Sunkel

ABSTRACT During cell division, chromatin undergoes structural changes essential to ensure faithful segregation of the genome. Condensins, abundant components of mitotic chromosomes, are known to form two different complexes, condensins I and II. To further examine the role of condensin I in chromosome structure and in particular in centromere organization, we depleted from S2 cells the Drosophila CAP-H homologue Barren, a subunit exclusively associated with condensin I. In the absence of Barren/CAP-H the condensin core subunits DmSMC4/2 still associate with chromatin, while the other condensin I non-structural maintenance of chromosomes family proteins do not. Immunofluorescence and in vivo analysis of Barren/CAP-H-depleted cells showed that mitotic chromosomes are able to condense but fail to resolve sister chromatids. Additionally, Barren/CAP-H-depleted cells show chromosome congression defects that do not appear to be due to abnormal kinetochore-microtubule interaction. Instead, the centromeric and pericentromeric heterochromatin of Barren/CAP-H-depleted chromosomes shows structural problems. After bipolar attachment, the centromeric heterochromatin organized in the absence of Barren/CAP-H cannot withstand the forces exerted by the mitotic spindle and undergoes irreversible distortion. Taken together, our data suggest that the condensin I complex is required not only to promote sister chromatid resolution but also to maintain the structural integrity of centromeric heterochromatin during mitosis.


PLOS Biology | 2008

Dual Role of Topoisomerase II in Centromere Resolution and Aurora B Activity

Paula A. Coelho; Joana Queiroz-Machado; Alexandre M. Carmo; Sara Moutinho-Pereira; Helder Maiato; Claudio E. Sunkel

Chromosome segregation requires sister chromatid resolution. Condensins are essential for this process since they organize an axial structure where topoisomerase II can work. How sister chromatid separation is coordinated with chromosome condensation and decatenation activity remains unknown. We combined four-dimensional (4D) microscopy, RNA interference (RNAi), and biochemical analyses to show that topoisomerase II plays an essential role in this process. Either depletion of topoisomerase II or exposure to specific anti-topoisomerase II inhibitors causes centromere nondisjunction, associated with syntelic chromosome attachments. However, cells degrade cohesins and timely exit mitosis after satisfying the spindle assembly checkpoint. Moreover, in topoisomerase II–depleted cells, Aurora B and INCENP fail to transfer to the central spindle in late mitosis and remain tightly associated with centromeres of nondisjoined sister chromatids. Also, in topoisomerase II–depleted cells, Aurora B shows significantly reduced kinase activity both in S2 and HeLa cells. Codepletion of BubR1 in S2 cells restores Aurora B kinase activity, and consequently, most syntelic attachments are released. Taken together, our results support that topoisomerase II ensures proper sister chromatid separation through a direct role in centromere resolution and prevents incorrect microtubule–kinetochore attachments by allowing proper activation of Aurora B kinase.


Developmental Cell | 2013

Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles.

Paula A. Coelho; Leah Bury; Bedra Sharif; Maria Giovanna Riparbelli; Jingyan Fu; Giuliano Callaini; David M. Glover; Magdalena Zernicka-Goetz

Summary During the first five rounds of cell division in the mouse embryo, spindles assemble in the absence of centrioles. Spindle formation initiates around chromosomes, but the microtubule nucleating process remains unclear. Here we demonstrate that Plk4, a protein kinase known as a master regulator of centriole formation, is also essential for spindle assembly in the absence of centrioles. Depletion of maternal Plk4 prevents nucleation and growth of microtubules and results in monopolar spindle formation. This leads to cytokinesis failure and, consequently, developmental arrest. We show that Plk4 function depends on its kinase activity and its partner protein, Cep152. Moreover, tethering Cep152 to cellular membranes sequesters Plk4 and is sufficient to trigger spindle assembly from ectopic membranous sites. Thus, the Plk4-Cep152 complex has an unexpected role in promoting microtubule nucleation in the vicinity of chromosomes to mediate bipolar spindle formation in the absence of centrioles.


Current Opinion in Genetics & Development | 1995

The elusive centromere: sequence divergence and functional conservation.

Claudio E. Sunkel; Paula A. Coelho

The centromere is an essential cis-acting structure present in the chromosomes of all eukaryotes, central to the mechanism that ensures proper segregation during meiosis and mitosis. Molecular characterization of centromeres in the budding and fission yeasts has advanced significantly over the last few years due to their relatively small size and the availability of functional assays. However, identification and characterization of centromeric sequences from multicellular organisms has proven to be slow and difficult in the absence of direct functional tests. Molecular data have recently become available on the centromere of Drosophila, making it possible to bridge a long-standing gap in our knowledge on the general structure of centromeres. An evaluation of the available data from yeast to man suggests that centromere sequence and centromere sequence organization have diverged significantly, even amongst different chromosomes of a single organism; however, overall centromere organization and kinetochore components might be significantly more conserved than thought previously.


Open Biology | 2015

Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse

Paula A. Coelho; Leah Bury; Marta N. Shahbazi; Kifayathullah Liakath-Ali; Peri Tate; Sam Wormald; Christopher J. Hindley; Meritxell Huch; Joy Archer; William C. Skarnes; Magdalena Zernicka-Goetz; David M. Glover

To address the long-known relationship between supernumerary centrosomes and cancer, we have generated a transgenic mouse that permits inducible expression of the master regulator of centriole duplication, Polo-like-kinase-4 (Plk4). Over-expression of Plk4 from this transgene advances the onset of tumour formation that occurs in the absence of the tumour suppressor p53. Plk4 over-expression also leads to hyperproliferation of cells in the pancreas and skin that is enhanced in a p53 null background. Pancreatic islets become enlarged following Plk4 over-expression as a result of equal expansion of α- and β-cells, which exhibit centrosome amplification. Mice overexpressing Plk4 develop grey hair due to a loss of differentiated melanocytes and bald patches of skin associated with a thickening of the epidermis. This reflects an increase in proliferating cells expressing keratin 5 in the basal epidermal layer and the expansion of these cells into suprabasal layers. Such cells also express keratin 6, a marker for hyperplasia. This is paralleled by a decreased expression of later differentiation markers, involucrin, filaggrin and loricrin. Proliferating cells showed an increase in centrosome number and a loss of primary cilia, events that were mirrored in primary cultures of keratinocytes established from these animals. We discuss how repeated duplication of centrioles appears to prevent the formation of basal bodies leading to loss of primary cilia, disruption of signalling and thereby aberrant differentiation of cells within the epidermis. The absence of p53 permits cells with increased centrosomes to continue dividing, thus setting up a neoplastic state of error prone mitoses, a prerequisite for cancer development.


Chromosoma | 1996

Identification of Porto-1, a new repeated sequence that localises close to the centromere of chromosome 2 of Drosophila melanogaster.

Paula A. Coelho; Dimitry Nurminsky; Daniel L. Hartl; Claudio E. Sunkel

Abstract.We have used the polymerase chain reaction (PCR) technique to search the Drosophila melanogaster genome for the presence of sequences with homology to mammalian and yeast centromeric DNA. Using primers based on the human CENP-B box present in α-satellite DNA and part of the Saccharomyces cerevisiae CDEIII centromeric sequence, a number of specific DNA fragments were amplified from total genomic DNA. In situ hybridization to polytene and mitotic chromosomes showed these fragments to localise to centromeric and pericentromeric regions. Direct cloning of the amplified fragments into conventional plasmids proved unsuccessful. However, a recombinant P1 clone containing D. melanogaster genomic DNA that supports PCR amplification by the primers was identified. Molecular characterisation of this clone revealed a DNA fragment that localises primarily to the centromere of chromosome 2. Sequence analysis indicated that this fragment contains at least four different repeats, including Rsp, transposable elements, Bari-1 and a new AT-rich repeated sequence that we have designated Porto-1. Detailed fluorescence in situ hybridization analysis shows that Porto-1 is localised very close to the primary constriction of chromosome 2. Sequence analysis suggests that this repeat was specifically amplified by our primers, although limited homology to the CENP-B box or CDEIII elements was found. In situ hybridization to a number of Drosophila species shows Porto-1 to be present only in D. melanogaster.


Cell Cycle | 2004

Could Condensin Scaffold the Mitotic Chromosome

Paula A. Coelho; Joana Queiroz-Machado; Claudio E. Sunkel

One of the most remarkable and yet poorly understood events during the cell cycle is how dispersed chromatin fragments are transformed into chromosomes every time cells undergo mitosis. It has been postulated that mitotic chromosomes might contain an axial scaffold that is involved in condensation but its molecules and structure have remained elusive. Recent data suggests that the condensin complex might indeed be an essential part of the scaffold that provides a platform for other proteins to localize and promote different aspects of chromosome condensation.

Collaboration


Dive into the Paula A. Coelho's collaboration.

Top Co-Authors

Avatar

Claudio E. Sunkel

Instituto de Biologia Molecular e Celular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leah Bury

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joana Queiroz-Machado

Instituto de Biologia Molecular e Celular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soren Steffensen

Instituto de Biologia Molecular e Celular

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge