Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula B. Donate is active.

Publication


Featured researches published by Paula B. Donate.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis

Raphael S. Peres; Foo Y. Liew; Jhimmy Talbot; Vanessa Carregaro; Renê Donizeti Ribeiro de Oliveira; Sérgio C. L. de Almeida; Rafael F. O. França; Paula B. Donate; Larissa G. Pinto; Flávia Isaura de Santi Ferreira; Diego L. Costa; Daniel P. Demarque; Dayana Rubio Gouvea; Norberto Peporine Lopes; Regina Helena Costa Queiroz; João Santana da Silva; F. J. C. Figueiredo; José C. Alves-Filho; Thiago M. Cunha; Sérgio H. Ferreira; Paulo Louzada-Junior; Fernando Q. Cunha

Significance Methotrexate (MTX) is the first-line therapy for rheumatoid arthritis (RA). However, about 40% of patients are resistant to MTX. Furthermore, MTX resistance is only apparent after a prolonged continuous MTX treatment (>3 mo), by which time the disease of the nonresponders would have aggravated. Thus, there is a considerable unmet need for a biomarker to select MTX-resistant patients and place them immediately on alternative therapy. We found here that the low density of CD39 on peripheral regulatory T cells in RA patients is a rapid, convenient, and reliable (P < 0.01) biomarker for MTX resistance. Our findings also provide previously unrecognized information on aspects of immune regulation in RA and the mechanism of action of MTX. Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by joint destruction and severe morbidity. Methotrexate (MTX) is the standard first-line therapy of RA. However, about 40% of RA patients are unresponsive to MTX treatment. Regulatory T cells (Tregs, CD4+CD25+FoxP3+) are thought to play an important role in attenuating RA. To investigate the role of Tregs in MTX resistance, we recruited 122 RA patients (53 responsive, R-MTX; 69 unresponsive, UR-MTX) and 33 healthy controls. Three months after MTX treatment, R-MTX but not UR-MTX showed higher frequency of peripheral blood CD39+CD4+CD25+FoxP3+ Tregs than the healthy controls. Tregs produce adenosine (ADO) through ATP degradation by sequential actions of two cell surface ectonucleotidases: CD39 and CD73. Tregs from UR-MTX expressed a lower density of CD39, produced less ADO, and had reduced suppressive activity than Tregs from R-MTX. In a prospective study, before MTX treatment, UR-MTX expressed a lower density of CD39 on Tregs than those of R-MTX or control (P < 0.01). In a murine model of arthritis, CD39 blockade reversed the antiarthritic effects of MTX treatment. Our results demonstrate that MTX unresponsiveness in RA is associated with low expression of CD39 on Tregs and the decreased suppressive activity of these cells through reduced ADO production. Our findings thus provide hitherto unrecognized mechanism of immune regulation in RA and on mode of action of MTX. Furthermore, our data suggest that low expression of CD39 on Tregs could be a noninvasive biomarker for identifying MTX-resistant RA patients.


Cancer Research | 2015

IL17 Promotes Mammary Tumor Progression by Changing the Behavior of Tumor Cells and Eliciting Tumorigenic Neutrophils Recruitment.

Luciana Benevides; Denise Morais da Fonseca; Paula B. Donate; Daniel Guimarães Tiezzi; Daniel De Carvalho; Jurandyr Moreira de Andrade; Gislaine Martins; João S. Silva

The aggressiveness of invasive ductal carcinoma (IDC) of the breast is associated with increased IL17 levels. Studying the role of IL17 in invasive breast tumor pathogenesis, we found that metastatic primary tumor-infiltrating T lymphocytes produced elevated levels of IL17, whereas IL17 neutralization inhibited tumor growth and prevented the migration of neutrophils and tumor cells to secondary disease sites. Tumorigenic neutrophils promote disease progression, producing CXCL1, MMP9, VEGF, and TNFα, and their depletion suppressed tumor growth. IL17A also induced IL6 and CCL20 production in metastatic tumor cells, favoring the recruitment and differentiation of Th17. In addition, IL17A changed the gene-expression profile and the behavior of nonmetastatic tumor cells, causing tumor growth in vivo, confirming the protumor role of IL17. Furthermore, high IL17 expression was associated with lower disease-free survival and worse prognosis in IDC patients. Thus, IL17 blockade represents an attractive approach for the control of invasive breast tumors.


Nature Communications | 2014

Nitric oxide enhances Th9 cell differentiation and airway inflammation

Wanda Niedbala; Anne-Gaelle Besnard; Daniele C. Nascimento; Paula B. Donate; Fabiane Sônego; Edwin Yip; Rodrigo Guabiraba; Hyun-Dong Chang; Sandra Y. Fukada; Robert J. Salmond; Edgar Schmitt; Tobias Bopp; Bernhard Ryffel; Foo Y. Liew

Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4+ T cells. NO de-represses the tumor suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2−/− mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared to wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells.


Nature Communications | 2017

IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population

Daniele C. Nascimento; Paulo H. Melo; Annie R. Piñeros; Raphael G. Ferreira; David F. Colón; Paula B. Donate; Fernanda V. S. Castanheira; Aline Gozzi; Paula Giselle Czaikoski; Wanda Niedbala; Marcos C. Borges; Dario S. Zamboni; Foo Y. Liew; Fernando Q. Cunha; José C. Alves-Filho

Patients who survive sepsis can develop long-term immune dysfunction, with expansion of the regulatory T (Treg) cell population. However, how Treg cells proliferate in these patients is not clear. Here we show that IL-33 has a major function in the induction of this immunosuppression. Mice deficient in ST2 (IL-33R) develop attenuated immunosuppression in cases that survive sepsis, whereas treatment of naive wild-type mice with IL-33 induces immunosuppression. IL-33, released during tissue injury in sepsis, activates type 2 innate lymphoid cells, which promote polarization of M2 macrophages, thereby enhancing expansion of the Treg cell population via IL-10. Moreover, sepsis-surviving patients have more Treg cells, IL-33 and IL-10 in their peripheral blood. Our study suggests that targeting IL-33 may be an effective treatment for sepsis-induced immunosuppression.


Molecular and Cellular Biochemistry | 2010

Age-related deregulation of Aire and peripheral tissue antigen genes in the thymic stroma of non-obese diabetic (NOD) mice is associated with autoimmune type 1 diabetes mellitus (DM-1)

Thaís A. Fornari; Paula B. Donate; Claudia Macedo; Márcia M.C. Marques; Danielle Aparecida Rosa de Magalhães; Geraldo A. Passos

Gene expression of peripheral tissue antigens (PTAs) in stromal medullary thymic epithelial cells (mTECs) is a key process to the negative selection of autoreactive thymocytes. This phenomenon was termed “promiscuous gene expression” (PGE), which is partially controlled by the Aire gene. Nevertheless, reasons for the correlation of Aire and PTAs with the emergence of autoimmune diseases are largely unknown, though it may be a result of a chronological effect. Although the effect of Aire mutations in pathogenic autoimmunity is well know, it could not be a unique cause for autoimmunity. Independently of mutations, temporal deregulation of Aire expression may imbalance Aire-dependent PTAs and/or wide PGE. This deregulation may be an early warning sign for autoimmune diseases as it guarantees autoantigen representation in the thymus. To assess this hypothesis, we studied the expression levels of Aire, Aire-dependent (Ins2) and Aire-independent (Gad67 and Col2a1) PTAs using real-time-PCR of the thymic stromal cells of NOD mice during the development of autoimmune type 1 diabetes mellitus (DM-1). Wide PGE was studied by microarrays in which the PTA genes were identified through parallel CD80+ mTEC 3.10 cell line expression profiling. The results show that Aire gene was down-regulated in young pre-autoimmune (pre-diabetic) NOD mice. PGE and specific PTA genes were down-regulated in adult autoimmune diabetic animals. These findings represent evidence indicating that chronological deregulation of genes important to negative selection may be associated with the development of an autoimmune disease (DM-1) in mice.


PLOS ONE | 2013

T Cell Post-Transcriptional miRNA-mRNA Interaction Networks Identify Targets Associated with Susceptibility/Resistance to Collagen-induced Arthritis

Paula B. Donate; Thaís A. Fornari; Claudia Macedo; Thiago M. Cunha; Daniele C. Nascimento; Elza T. Sakamoto-Hojo; Eduardo A. Donadi; Fernando Q. Cunha; Geraldo A. Passos

Background Due to recent studies indicating that the deregulation of microRNAs (miRNAs) in T cells contributes to increased severity of rheumatoid arthritis, we hypothesized that deregulated miRNAs may interact with key mRNA targets controlling the function or differentiation of these cells in this disease. Methodology/Principal Findings To test our hypothesis, we used microarrays to survey, for the first time, the expression of all known mouse miRNAs in parallel with genome-wide mRNAs in thymocytes and naïve and activated peripheral CD3+ T cells from two mouse strains the DBA-1/J strain (MHC-H2q), which is susceptible to collagen induced arthritis (CIA), and the DBA-2/J strain (MHC-H2d), which is resistant. Hierarchical clustering of data showed the several T cell miRNAs and mRNAs differentially expressed between the mouse strains in different stages of immunization with collagen. Bayesian statistics using the GenMir++ algorithm allowed reconstruction of post-transcriptional miRNA-mRNA interaction networks for target prediction. We revealed the participation of miR-500, miR-202-3p and miR-30b*, which established interactions with at least one of the following mRNAs: Rorc, Fas, Fasl, Il-10 and Foxo3. Among the interactions that were validated by calculating the minimal free-energy of base pairing between the miRNA and the 3′UTR of the mRNA target and luciferase assay, we highlight the interaction of miR-30b*-Rorc mRNA because the mRNA encodes a protein implicated in pro-inflammatory Th17 cell differentiation (Rorγt). FACS analysis revealed that Rorγt protein levels and Th17 cell counts were comparatively reduced in the DBA-2/J strain. Conclusions/Significance This result showed that the miRNAs and mRNAs identified in this study represent new candidates regulating T cell function and controlling susceptibility and resistance to CIA.


Immunobiology | 2013

Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire).

Ernna H. Oliveira; Claudia Macedo; Paula B. Donate; Renata S. Almeida; Nicole Pezzi; Catherine Nguyen; Marcos A. Rossi; Elza T. Sakamoto-Hojo; Eduardo A. Donadi; Geraldo A. Passos

In the thymus of non-obese diabetic (NOD) mice, the expression of the autoimmune regulator (Aire) gene varies with age, and its down-regulation in young mice precedes the later emergence of type 1 diabetes mellitus (T1D). In addition, the insulin (Ins2) peripheral tissue antigen (PTA) gene, which is Aire-dependent, is also deregulated in these mice. Based in these findings, we hypothesized that the imbalance in PTA gene expression in the thymus can be associated with slight variations in Aire transcript levels. To test this, we used siRNA to knockdown Aire by in vivo electro-transfection of the thymus of BALB/c mice. The efficiency of the electro-transfection was monitored by assessing the presence of irrelevant Cy3-labeled siRNA in the thymic stroma. Importantly, Aire-siRNA reached medullary thymic epithelial cells (mTECs) down-regulating Aire. As expected, the in vivo Aire knockdown was partial and transient; the maximum 59% inhibition occurred in 48 h. The Aire knockdown was sufficient to down-regulate PTA genes; however, surprisingly, several others, including Ins2, were up-regulated. The modulation of these genes after in vivo Aire knockdown was comparable to that observed in NOD mice before the emergence of T1D. The in vitro transfections of 3.10 mTEC cells with Aire siRNA resulted in samples featuring partial (69%) and complete (100%) Aire knockdown. In these Aire siRNA-transfected 3.10 mTECs, the expression of PTA genes, including Ins2, was down-regulated. This suggests that the expression profile of PTA genes in mTECs is affected by fine changes in the transcription level of Aire.


PLOS ONE | 2015

Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice

Thaís A. Fornari; Paula B. Donate; Amanda F. Assis; Claudia Macedo; Elza T. Sakamoto-Hojo; Eduardo A. Donadi; Geraldo A. Passos

In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs.


Clinical & Developmental Immunology | 2011

Development of Type 1 Diabetes Mellitus in Nonobese Diabetic Mice Follows Changes in Thymocyte and Peripheral T Lymphocyte Transcriptional Activity

Thaís A. Fornari; Paula B. Donate; Claudia Macedo; Elza T. Sakamoto-Hojo; Eduardo A. Donadi; Geraldo A. Passos

As early as one month of age, nonobese diabetic (NOD) mice feature pancreatic infiltration of autoreactive T lymphocytes, which destruct insulin-producing beta cells, producing autoimmune diabetes mellitus (T1D) within eight months. Thus, we hypothesized that during the development of T1D, the transcriptional modulation of immune reactivity genes may occur as thymocytes mature into peripheral T lymphocytes. The transcriptome of thymocytes and peripheral CD3+ T lymphocytes from prediabetic or diabetic mice analyzed through microarray hybridizations identified 2,771 differentially expressed genes. Hierarchical clustering grouped mice according to age/T1D onset and genes according to their transcription profiling. The transcriptional activity of thymocytes developing into peripheral T lymphocytes revealed sequential participation of genes involved with CD4+/CD8+ T-cell differentiation (Themis), tolerance induction by Tregs (Foxp3), and apoptosis (Fasl) soon after T-cell activation (IL4), while the emergence of T1D coincided with the expression of cytotoxicity (Crtam) and inflammatory response genes (Tlr) by peripheral T lymphocytes.


Immunobiology | 2015

Aire-dependent peripheral tissue antigen mRNAs in mTEC cells feature networking refractoriness to microRNA interaction

Claudia Macedo; Ernna H. Oliveira; Renata S. Almeida; Paula B. Donate; Thaís A. Fornari; Nicole Pezzi; Elza T. Sakamoto-Hojo; Eduardo A. Donadi; Geraldo A. Passos

The downregulation of PTA genes in mTECs is associated with the loss of self-tolerance, and the role of miRNAs in this process is not fully understood. Therefore, we studied the expression of mRNAs and miRNAs in mTECs from autoimmune NOD mice during the period when loss of self-tolerance occurs in parallel with non-autoimmune BALB/c mice. Although the expression of the transcriptional regulator Aire was unchanged, we observed downregulation of a set of PTA mRNAs. A set of miRNAs was also differentially expressed in these mice. The reconstruction of miRNA-mRNA interaction networks identified the controller miRNAs and predicted the PTA mRNA targets. Interestingly, the known Aire-dependent PTAs exhibited pronounced refractoriness in the networking interaction with miRNAs. This study reveals the existence of a new mechanism in mTECs, and this mechanism may have importance in the control of self-tolerance.

Collaboration


Dive into the Paula B. Donate's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Macedo

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge