Paula Berkowitz
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paula Berkowitz.
Journal of Biological Chemistry | 2005
Paula Berkowitz; Peiqi Hu; Zhi Liu; Luis A. Diaz; Jan J. Enghild; Michael P. Chua; David S. Rubenstein
In the human autoimmune blistering disease pemphigus vulgaris (PV) pathogenic antibodies bind the desmosomal cadherin desmoglein-3 (dsg3), causing epidermal cell-cell detachment (acantholysis). Pathogenic PV dsg3 autoantibodies were used to initiate desmosome signaling in human keratinocyte cell cultures. Heat shock protein 27 (HSP27) and p38MAPK were identified as proteins rapidly phosphorylated in response to PV IgG. Inhibition of p38MAPK activity prevented PV IgG-induced HSP27 phosphorylation, keratin filament retraction, and actin reorganization. These observations suggest that PV IgG binding to dsg3 activates desmosomal signal transduction cascades leading to (i) p38MAPK and HSP27 phosphorylation and (ii) cytoskeletal reorganization, supporting a mechanistic role for signaling in PV IgG-induced acantholysis. Targeting desmosome signaling via inhibition of p38MAPK and HSP27 phosphorylation may provide novel treatments for PV and other desmosome-associated blistering diseases.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Paula Berkowitz; Peiqi Hu; Simon Warren; Zhi Liu; Luis A. Diaz; David S. Rubenstein
Pemphigus vulgaris (PV) is a life-threatening autoimmune blistering skin disease characterized by detachment of keratinocytes (acantholysis). It has been proposed that PV IgG might trigger signaling and that this process may lead to acantholysis. Indeed, we recently identified a rapid and dose-dependent phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and heat shock protein (HSP) 27 after binding of PV antibodies to cultured keratinocytes. In human keratinocyte cultures, inhibitors of p38MAPK prevented PV IgG-induced phosphorylation of HSP27 and, more importantly, prevented the early cytoskeletal changes associated with loss of cell–cell adhesion. This study was undertaken to (i) determine whether p38MAPK and HSP25, the murine HSP27 homolog, were similarly phosphorylated in an in vivo model of PV and (ii) investigate the potential therapeutic use of p38MAPK inhibition to block blister formation in an animal model of PV. We now report that p38MAPK inhibitors prevented PV blistering disease in vivo. Targeting the end-organ by inhibiting keratinocyte desmosome signaling may be effective for treating desmosome autoimmune blistering disorders.
Journal of Biological Chemistry | 2010
Puneet S. Jolly; Paula Berkowitz; Meryem Bektas; Hua-En Lee; Michael Chua; Luis A. Diaz; David S. Rubenstein
Pemphigus vulgaris (PV) is an autoimmune blistering disease in which antibodies against the desmosomal cadherin, DSG3 (desmoglein-3), cause acantholysis. It has become increasingly clear that loss of cell-cell adhesion in PV is a complex and active process involving multiple signaling events such as activation of p38MAPK. It has also been demonstrated that incubating keratinocytes with PV IgG causes a redistribution of DSG3 from the cell surface to endosomes, which target these proteins for degradation. This study was undertaken to determine the relationship between p38MAPK and DSG3 endocytosis in pemphigus. In this work, we confirm that PV IgG causes internalization of cell-surface DSG3 into endosomes (as early as 4 h), which are then depleted from both detergent-soluble and detergent-insoluble pools. Cell-surface DSG3 internalization and depletion from both the detergent-soluble and detergent-insoluble fractions were blocked by the p38MAPK inhibitor SB202190. These data suggest that p38MAPK is capable of regulating PV IgG-mediated DSG3 internalization and that previously isolated mechanistic observations may be linked to a common pathway by which pemphigus autoantibodies lead to acantholysis.
American Journal of Pathology | 2008
Paula Berkowitz; Michael Chua; Zhi Liu; Luis A. Diaz; David S. Rubenstein
Pemphigus foliaceus (PF) is a human autoimmune blistering disease in which a humoral immune response targeting the skin results in a loss of keratinocyte cell-cell adhesion in the superficial layers of the epidermal epithelium. In PF, desmoglein-1-specific autoantibodies induce blistering. Evidence is beginning to accumulate that activation of signaling may have an important role in the ability of pathogenic pemphigus IgGs to induce blistering and that both p38 mitogen-activated protein kinase (MAPK) and heat shock protein (HSP) 27 are part of this signaling pathway. This study was undertaken to investigate the ability of PF IgGs to activate signaling as well as the contribution of this signaling pathway to blister induction in an in vivo model of PF. Phosphorylation of both p38 MAPK and HSP25, the murine HSP27 homolog, was observed in the skin of PF IgG-treated mice. Furthermore, inhibition of p38 MAPK blocked the ability of PF IgGs to induce blistering in vivo. These results indicate that PF IgG-induced blistering is dependent on activation of p38 MAPK in the target keratinocyte. Rather than influencing the immune system, limiting the autoantibody-induced intracellular signaling response that leads to target end-organ damage may be a more viable therapeutic strategy for the treatment of autoimmune diseases. Inhibition of p38 MAPK may be an effective strategy for the treatment of PF.
Journal of Biological Chemistry | 2009
Hua En Lee; Paula Berkowitz; Puneet S. Jolly; Luis A. Diaz; Michael P. Chua; David S. Rubenstein
In pemphigus vulgaris and pemphigus foliaceus (PF), autoantibodies against desmoglein-3 and desmoglein-1 induce epidermal cell detachment (acantholysis) and blistering. Activation of keratinocyte intracellular signaling pathways is emerging as an important component of pemphigus IgG-mediated acantholysis. We previously reported activation of p38 mitogen-activated protein kinase (MAPK) in response to pathogenic pemphigus vulgaris and PF IgG. Inhibition of p38MAPK blocked pemphigus IgG-induced cytoskeletal reorganization in tissue culture and blistering in pemphigus mouse models. We now extend these observations by demonstrating two peaks of p38MAPK activation in pemphigus tissue culture and mouse models. Administration of the p38MAPK inhibitor SB202190 before PF IgG injection blocked both peaks of p38MAPK phosphorylation and blister formation, consistent with our previous findings; however, administration of the inhibitor 4 h after PF IgG injection blocked only the later peak of p38MAPK activation but failed to block blistering. Examination of the temporal relationship of p38MAPK phosphorylation and apoptosis showed that apoptosis occurs at or after the second peak of p38MAPK activation. The time course of p38MAPK activation and apoptotic markers, as well as the ability of inhibitors of p38MAPK to block activation of the proapoptotic proteinase caspase-3, suggest that activation of apoptosis is downstream to, and a consequence of, p38MAPK activation in pemphigus acantholysis. Furthermore, these observations suggest that the earlier peak of p38MAPK activation is part of the mechanism leading to acantholysis, whereas the later peak of p38MAPK and apoptosis may not be essential for acantholysis.
Journal of Biological Chemistry | 2011
Lisa Heimbach; Zhuowei Li; Paula Berkowitz; Minglang Zhao; Ning Li; David S. Rubenstein; Luis A. Diaz; Zhi Liu
Bullous pemphigoid (BP) is an autoimmune skin-blistering disease characterized by the presence of autoantibodies against the hemidesmosomal proteins BP230 and BP180. In the IgG passive transfer mouse model of BP, subepidermal blistering is triggered by anti-BP180 antibodies and depends on the complement system, mast cell (MC) degranulation, and neutrophil infiltration. In this study, we have identified the signaling events that connect the activation of the complement system and MC degranulation. We found that mice deficient in MCs or the C5a receptor (C5aR) injected with pathogenic anti-BP180 IgG failed to develop subepidermal blisters and exhibited a drastic reduction in p38 MAPK phosphorylation compared with WT mice. Local reconstitution with MCs from WT but not C5aR-deficient mice restored high levels of p38 MAPK phosphorylation and subepidermal blistering in MC-deficient mice. Local injection of recombinant C5a induced phosphorylation of p38 MAPK in WT but not MC-deficient mice. Cultured mouse MCs treated with recombinant C5a exhibited a significant increase in p38 MAPK phosphorylation and MC degranulation. Taken together, these data demonstrate that C5a interacts with C5aR on MCs and that this C5a-C5aR interaction triggers activation of the p38 MAPK pathway, subsequent MC degranulation, and ultimately BP blistering.
Journal of Biological Chemistry | 2006
Peiqi Hu; Paula Berkowitz; Victoria J. Madden; David S. Rubenstein
O-Glycosylation modifies and regulates a variety of intracellular proteins. Plakoglobin, which functions in both cell-cell adhesion and signal transduction, is modified by O-glycosylation; however, the significance is unknown. To investigate the functional consequence of plakoglobin O-glycosylation, we cloned and overexpressed in keratinocytes murine O-GlcNAc transferase (mOGT). Over expression of mOGT in murine keratinocytes resulted in (i) glycosylation of plakoglobin and (ii) increased levels of plakoglobin due to post-translational stabilization of plakoglobin. Additionally, overexpression of mOGT in keratinocytes correlated with increased staining for cell-cell adhesion proteins and greater cell-cell adhesion. These observations suggest that O-glycosylation functions to regulate the post-translational stability of plakoglobin and keratinocyte cell-cell adhesion.
Journal of Biological Chemistry | 2013
Meryem Bektas; Puneet S. Jolly; Paula Berkowitz; Masayuki Amagai; David S. Rubenstein
Background: Cell signaling induced by pathogenic IgG in the human autoimmune skin disease pemphigus vulgaris contributes to loss of adhesion. Results: PV IgG activate EGFR downstream of p38 and inhibiting EGFR blocks antibody induced desmoglein endocytosis, keratin retraction, and blistering. Conclusion: PV IgG-mediated transactivation of EGFR contributes mechanistically to loss of keratinocyte cell-cell adhesion. Significance: This study provides the mechanistic rationale for using EGFR inhibitors in PV. The pemphigus family of autoimmune bullous disorders is characterized by autoantibody binding to desmoglein 1 and/or 3 (dsg1/dsg3). In this study we show that EGF receptor (EGFR) is activated following pemphigus vulgaris (PV) IgG treatment of primary human keratinocytes and that EGFR activation is downstream of p38 mitogen-activated protein kinase (p38). Inhibition of EGFR blocked PV IgG-triggered dsg3 endocytosis, keratin intermediate filament retraction, and loss of cell-cell adhesion in vitro. Significantly, inhibiting EGFR prevented PV IgG-induced blister formation in the passive transfer mouse model of pemphigus. These data demonstrate cross-talk between dsg3 and EGFR, that this cross-talk is regulated by p38, and that EGFR is a potential therapeutic target for pemphigus. Small-molecule inhibitors and monoclonal antibodies directed against EGFR are currently used to treat several types of solid tumors. This study provides the experimental rationale for investigating the use of EGFR inhibitors in pemphigus.
Journal of Biological Chemistry | 2014
Kasper Runager; Meryem Bektas; Paula Berkowitz; David S. Rubenstein
Background: Increased intracellular protein O-GlcNAc modification may contribute to delayed wound healing in diabetes. Results: Hyperglycemia increases intracellular protein O-GlcNAc modification and delays wound healing in keratinocytes. Targeted knockdown of OGT altered rates of wound closure. Conclusion: OGT knockdown accelerates wound healing under both normal and hyperglycemic culture conditions. Significance: OGT may represent a novel druggable target for promoting healing of diabetic wounds. Non-healing wounds are a significant source of morbidity. This is particularly true for diabetic patients, who tend to develop chronic skin wounds. O-GlcNAc modification of serine and threonine residues is a common regulatory post-translational modification analogous to protein phosphorylation; increased intracellular protein O-GlcNAc modification has been observed in diabetic and hyperglycemic states. Two intracellular enzymes, UDP-N-acetylglucosamine-polypeptide β-N-acetylglucosaminyl transferase (OGT) and O-GlcNAc-selective N-acetyl-β-d-glucosaminidase (OGA), mediate addition and removal, respectively, of N-acetylglucosamine (GlcNAc) from intracellular protein substrates. Alterations in O-GlcNAc modification of intracellular proteins is linked to diabetes, and the increased levels of protein O-GlcNAc modification observed in diabetic tissues may in part explain some of the observed underlying pathophysiology that contributes to delayed wound healing. We have previously shown that increasing protein O-GlcNAc modification by overexpression of OGT in murine keratinocytes results in elevated protein O-GlcNAc modification and a hyperadhesive phenotype. This study was undertaken to explore the hypothesis that increased O-GlcNAc modification of cellular proteins in diabetic skin could contribute to the delayed wound healing observed in patients with diabetic skin ulcers. In the present study, we show that human keratinocytes cultured under hyperglycemic conditions display increased levels of O-GlcNAc modification as well as a delay in the rate of wound closure in vitro. We further show that specific knockdown of OGT by RNA interference (RNAi) reverses this effect, thereby opening up the opportunity for OGT-targeted therapies to promote wound healing in diabetic patients.
Clinical Cancer Research | 2015
Craig Carson; Stergios J. Moschos; Sharon N. Edmiston; David B. Darr; Nana Nikolaishvili-Feinberg; Pamela A. Groben; Xin Zhou; Pei Fen Kuan; Shaily Pandey; Keefe T. Chan; Jamie L. Jordan; Honglin Hao; Jill S. Frank; Dennis A. Hopkinson; David C. Gibbs; Virginia D. Alldredge; Eloise Parrish; Sara C. Hanna; Paula Berkowitz; David S. Rubenstein; C. Ryan Miller; James E. Bear; David W. Ollila; Norman E. Sharpless; Kathleen Conway; Nancy E. Thomas
Purpose: IL2 inducible T-cell kinase (ITK) promoter CpG sites are hypomethylated in melanomas compared with nevi. The expression of ITK in melanomas, however, has not been established and requires elucidation. Experimental Design: An ITK-specific monoclonal antibody was used to probe sections from deidentified, formalin-fixed paraffin-embedded tumor blocks or cell line arrays and ITK was visualized by IHC. Levels of ITK protein differed among melanoma cell lines and representative lines were transduced with four different lentiviral constructs that each contained an shRNA designed to knockdown ITK mRNA levels. The effects of the selective ITK inhibitor BI 10N on cell lines and mouse models were also determined. Results: ITK protein expression increased with nevus to metastatic melanoma progression. In melanoma cell lines, genetic or pharmacologic inhibition of ITK decreased proliferation and migration and increased the percentage of cells in the G0–G1 phase. Treatment of melanoma-bearing mice with BI 10N reduced growth of ITK-expressing xenografts or established autochthonous (Tyr-Cre/Ptennull/BrafV600E) melanomas. Conclusions: We conclude that ITK, formerly considered an immune cell–specific protein, is aberrantly expressed in melanoma and promotes tumor development and progression. Our finding that ITK is aberrantly expressed in most metastatic melanomas suggests that inhibitors of ITK may be efficacious for melanoma treatment. The efficacy of a small-molecule ITK inhibitor in the Tyr-Cre/Ptennull/BrafV600E mouse melanoma model supports this possibility. Clin Cancer Res; 21(9); 2167–76. ©2015 AACR.