Paula Daza
University of Seville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paula Daza.
Mutation Research | 1998
Inmaculada Domínguez; Paula Daza; A.T. Natarajan; Felipe Cortés
The fluorescence plus Giemsa (FPG) and fluorescence in situ hybridization (FISH) techniques have been used to determine, respectively, the frequencies of sister chromatid exchanges (SCEs) and stable chromosome aberrations (translocations) induced by different concentrations of BrdU in the Chinese hamster ovary cell mutant EM9 and its parental line AA8. The results indicate that BrdU induced a high frequency of SCEs and translocations in EM9 as compared with AA8, and that the translocation/dicentric ratio was also higher in the mutant cell line than in the parental cell line in both untreated and BrdU-treated cultures. These observations may indicate a possible relationship between the molecular mechanisms involved in the formation of SCEs and translocations.
Cell Death and Disease | 2013
Elena Gavilán; Inmaculada Sánchez-Aguayo; Paula Daza; Diego Ruano
The ubiquitin–proteasome system and the autophagy–lysosome pathway are the two main mechanisms for eukaryotic intracellular protein degradation. Proteasome inhibitors are used for the treatment of some types of cancer, whereas autophagy seems to have a dual role in tumor cell survival and death. However, the relationship between both pathways has not been extensively studied in tumor cells. We have investigated both proteolytic systems in the human epithelial breast non-tumor cell line MCF10A and in the human epithelial breast tumor cell line MCF7. In basal condition, tumor cells showed a lower proteasome function but a higher autophagy activity when compared with MCF10A cells. Importantly, proteasome inhibition (PI) leads to different responses in both cell types. Tumor cells showed a dose-dependent glycogen synthase kinase-3 (GSK-3)β inhibition, a huge increase in the expression of the transcription factor CHOP and an active processing of caspase-8. By contrast, MCF10A cells fully activated GSK-3β and showed a lower expression of both CHOP and processed caspase-8. These molecular differences were reflected in a dose-dependent autophagy activation and cell death in tumor cells, while non-tumor cells exhibited the formation of inclusion bodies and a decrease in the cell death rate. Importantly, the behavior of the MCF7 cells can be reproduced in MCF10A cells when GSK-3β and the proteasome were simultaneously inhibited. Under this situation, MCF10A cells strongly activated autophagy, showing minimal inclusion bodies, increased CHOP expression and cell death rate. These findings support GSK-3β signaling as a key mechanism in regulating autophagy activation or inclusion formation in human tumor or non-tumor breast cells, respectively, which may shed new light on breast cancer control.
Neurobiology of Aging | 2015
Elena Gavilán; Cristina Pintado; María P. Gavilán; Paula Daza; Inmaculada Sánchez-Aguayo; Angélica Castaño; Diego Ruano
Autophagy plays a key role in the maintenance of cellular homeostasis, and autophagy deregulation gives rise to severe disorders. Many of the signaling pathways regulating autophagy under stress conditions are still poorly understood. Using a model of proteasome stress in rat hippocampus, we have characterized the functional crosstalk between the ubiquitin proteasome system and the autophagy-lysosome pathway, identifying also age-related modifications in the crosstalk between both proteolytic systems. Under proteasome inhibition, both autophagy activation and resolution were efficiently induced in young but not in aged rats, leading to restoration of protein homeostasis only in young pyramidal neurons. Importantly, proteasome stress inhibited glycogen synthase kinase-3β in young but activated in aged rats. This age-related difference could be because of a dysfunction in the signaling pathway of the insulin growth factor-1 under stress situations. Present data highlight the potential role of glycogen synthase kinase-3β in the coordination of both proteolytic systems under stress situation, representing a key molecular target to sort out this deleterious effect.
International Journal of Radiation Biology | 1997
Paula Daza; H. SCHUssLER; T. J. McMILLAN; Sabine Girod; Petra Pfeiffer
Radiosensitivity and repair of DNA damage induced by ionizing radiation and restriction enzymes were investigated in three human epithelial cell lines: two tumorigenic squamous carcinoma cell lines (SCC-4 and SCC-25), and a non-tumorigenic epidermal keratinocyte cell line (RHEK-1). Sensitivity to ionizing radiation was determined using a clonogenic cell survival assay, which showed SCC-4 to be more radiosensitive than SCC-25 and RHEK-1, which in turn displayed about equal sensitivity. Using DNA precipitation under alkaline conditions for the analysis of induction and repair of DNA single-strand breaks (ssb), an increased level of ssb induction was found for SCC-4 while the efficiency of ssb repair was about equal in all three cell lines. Using pulsed-field gel electrophoresis (PFGE) for the measurement of induction and repair of DNA double-strand breaks (dsb), no consistent differences were detected between the three cell lines. A plasmid reconstitution assay was used to determine the capacity to rejoin restriction enzyme-induced dsb in whole-cell extracts prepared from the three cell lines. In these experiments, dsb rejoining was shown to be significantly reduced in the most radiosensitive SCC-4 cell line while it was about equal in RHEK-1 and SCC-25. The results indicate that plasmid reconstitution in cell-free extracts is a sufficiently sensitive assay to detect differences in repair capacity among tumour cell lines of different radiosensitivity which remain undetectable by DNA precipitation and PFGE.
Cell Biology International | 2002
Paula Daza; José Torreblanca; Gregorio García-Herdugo; Francisco J. Moreno
Camptothecin (CPT) and actinomicyn‐induced strand‐breaks, repair and apoptosis in unstimulated human blood cells were studied using the DNA comet assay, and electrophoresis of low molecular weight DNA extracts. On the one hand, incubation of G0 leukocytes for 1h with CPT induced DNA strand‐breaks that were observed using the single cell gel electrophoresis technique. On the other hand, internucleosomal DNA fragments were not observed, suggesting that apoptosis had not occurred. DNA‐strand‐breaks caused by CPT were repaired 24h after treatment; the migration of DNA fragments was assessed by a reduction in the number of comets. These data strongly suggest that the unexpected clastogenic effect of this topoisomerase I inhibitor is not due to the collision of the cleavage complex with the replication fork, since replication does not occur in G0. In our opinion, this effect could be due instead to the topoisomerase I enzyme being able to bind DNA in the absence of replication, probably in a way that is not strictly related to the progression of the cell cycle. Thus, CPT does not provoke apoptosis in quiescent leukocytes.
Mutation Research | 1992
Paula Daza; P. Escalza; Santiago Mateos; Felipe Cortés
The present study was carried out in order to analyze how persistent the lesions in DNA are which elicit sister-chromatid exchanges (SCEs), induced by three different chemical agents, mitomycin C (MMC), 4-nitroquinoline-1-oxide (4NQO) and ethyl methanesulfonate (EMS), in proliferating human lymphocytes. Cells were exposed to the mutagens for 1 h just before starting bromodeoxyuridine substitution and SCEs were examined in third-cycle metaphases showing three-way-differential staining, by means of our previously standardized method. The results show that, in spite of the fact that these three compounds have different modes of action, the lesions induced by all of them seem to be capable of persisting in DNA and eliciting SCEs for at least three successive cell cycles.
Archive | 2011
Alberto Yúfera; Alberto Olmo; Paula Daza; Daniel Cañete
Many biological parameters and processes can be sensed and monitored using their impedance as marker (Grimmes, 2008), (Beach. 2005), (Yufera, 2005), (Radke, 2004), with the advantage that it is a non-invasive, relatively cheap technique. Cell growth, cell activity, changes in cell composition, shapes or cell location are only some examples of processes which can be detected by microelectrode-cell impedance sensors (Huang, 2004) (Borkholder, 1998). The electrical impedance of a biological sample reflects actual physical properties of the tissue. In frequency dependent analyses, the -dispersion ranging from kilohertzs to hundreds of megahertzs (Schwan, 1957) is mainly affected by the shape of the cells, the structure of the cell membranes, and the amount of intra and extra cellular solution. Electrical bio-impedance can be used to assess the properties of biological materials (Ackmann, 1993) involved in processes such as cancer development (Giaever, 1991), (Blady, 1996), (Aberg, 2004); because the cells of healthy tissues and cancer are different in shape, size and orientation, abnormal cells can be detected using their impedance as a marker. Among Impedance Spectroscopy (IS) techniques, Electrical Cell-substrate Impedance Spectroscopy (ECIS) (Giaever, 1986), based on two-electrode setups, allows the measurement of cell-culture impedances and makes it possible to determine the biological condition (material, internal activity, motility and size) of a cell type and its relationship with the environment; for example, the transfer flow through the cell membrane (Wang, 2010). One of the main drawbacks of the ECIS technique is the need to use efficient models to decode the electrical results obtained. To efficiently manage bio-impedance data, reliable electrical models of the full system comprising electrodes, medium and cells are required. Several studies have been carried out in this field (Giaever, 1991), (Huang, 2004), (Borkholder, 1998), (Joye, 2008), (Olmo, 2010), some of them employing Finite Element simulation (FEM) for impedance model extraction. These models are the key for matching electrical simulations to real system performances and hence for correctly decoding the results obtained in experiments.
Scientific Reports | 2015
Elena Gavilán; Servando Giráldez; Inmaculada Sánchez-Aguayo; F J Romero; Diego Ruano; Paula Daza
Targeting the ubiquitin proteasome pathway has emerged as a rational approach in the treatment of human cancers. Autophagy has been described as a cytoprotective mechanism to increase tumor cell survival under stress conditions. Here, we have focused on the role of proteasome inhibition in cell cycle progression and the role of autophagy in the proliferation recovery. The study was performed in the breast cancer cell line MCF7 compared to the normal mammary cell line MCF10A. We found that the proteasome inhibitor MG132 induced G1/S arrest in MCF10A, but G2/M arrest in MCF7 cells. The effect of MG132 on MCF7 was reproduced on MCF10A cells in the presence of the glycogen synthase kinase 3β (GSK-3β) inhibitor VII. Similarly, MCF7 cells overexpressing constitutively active GSK-3β behaved like MCF10A cells. On the other hand, MCF10A cells remained arrested after MG132 removal while MCF7 recovered the proliferative capacity. Importantly, this recovery was abolished in the presence of the autophagy inhibitor 3-methyladenine (3-MA). Thus, our results support the relevance of GSK-3β and autophagy as two targets for controlling cell cycle progression and proliferative capacity in MCF7, highlighting the co-treatment of breast cancer cells with 3-MA to synergize the effect of the proteasome inhibition.
Cell Biology International | 2004
Paula Daza; José Torreblanca; Francisco J. Moreno
Our main aim was to establish the efficiency of the single cell electrophoresis technique for differentiating between drugs that bind DNA and those that do not. The alkaline comet assay was used to test the responses of human leukocytes (quiescent cells) to damage induced by reportedly genotoxic and reportedly cytotoxic agents. Incubation of G0 leukocytes for 1 h with the genotoxic agents camptothecin and actinomycin C provoked DNA migration, observed as comet figures. On the other hand, when cells were treated with the cytotoxic agents cordycepin, fluorodeoxyuridine and puromycin, the leukocyte nuclei were indistinguishable from those of untreated cells. In addition, we have developed a rapid method using non‐proliferating cells that requires neither culture nor lymphocyte isolation. This method promises to be useful as a rapid in vitro screening assay.
Chromosoma | 1992
J. Piñero; Paula Daza; P. Escalza; Felipe Cortés
The influence of low doses of 5-bromodeoxyuridine (BrdU) on the occurrence of sister chromatid exchanges (SCEs) during the first cell cycle, when unsubstituted DNA templates replicate in the presence of the halogenated nucleoside (SCE1) has been assessed in third mitosis (M3) Chinese hamster ovary (CHO) cells showing three-way differential (TWD) staining. In addition, lower concentrations of BrdU, not detectable by Giemsa staining, have been tested by a high resolution immunoperoxidase method (anti-BrdU monoclonal antibody) and SCEs were scored in second mitosis (M2) cells. Our findings was a dose-response curve for SCE1 that allows an estimated mean spontaneous yield of 1.32/cell per cell cycle by extrapolation to zero concentration of BrdU. On the other hand, when the total SCE frequency corresponding to the first and second rounds of replication (SCE1+SCE2) found in M3 chromosomes was compared with the yield of SCEs scored in M2 cells grown in BrdU at doses lower than 1 μM no further reduction was achieved. This seems to indicate that SCEs can occur spontaneously in this cell line, though the estimated frequency is higher than that reported in vivo.