Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula G. Ragone is active.

Publication


Featured researches published by Paula G. Ragone.


Infection, Genetics and Evolution | 2012

Candidate targets for Multilocus Sequence Typing of Trypanosoma cruzi: Validation using parasite stocks from the Chaco Region and a set of reference strains

Juan J. Lauthier; Nicolás Tomasini; Christian Barnabé; María M. Monje Rumi; Anahí M. Alberti D’Amato; Paula G. Ragone; Matthew Yeo; Michael D. Lewis; Martin S. Llewellyn; Miguel A. Basombrío; Michael A. Miles; Michel Tibayrenc; Patricio Diosque

A Multilocus Sequence Typing (MLST) scheme was designed and applied to a set of 20 Trypanosoma cruzi stocks belonging to three main discrete typing units (T. cruzi I, V and VI) from a geographically restricted Chagas disease endemic area in Argentina, 12 reference strains comprising two from each of the six main discrete typing units of the parasite (T. cruzi I-VI), and one T. cruzi marinkellei strain. DNA fragments (≅400-bp) from 10 housekeeping genes were sequenced. A total of 4178 bp were analyzed for each stock. In all, 154 polymorphic sites were identified. Ninety-five sites were heterozygous in at least one analyzed stock. Seventeen diploid sequence types were identified from 32 studied T. cruzi stocks (including the reference strains). All stocks were correctly assigned to their corresponding discrete typing units. We propose this MLST scheme as provisional, with scope for improvement by studying new gene targets on a more diverse sample of stocks, in order to define an optimized MLST scheme for T. cruzi. This approach is an excellent candidate to become the gold standard for T. cruzi genetic typing. We suggest that MLST will have a strong impact on molecular epidemiological studies of Chagas disease and the phylogenetics of its causative agent.


Infection, Genetics and Evolution | 2011

Interest and limitations of Spliced Leader Intergenic Region sequences for analyzing Trypanosoma cruzi I phylogenetic diversity in the Argentinean Chaco.

Nicolás Tomasini; Juan J. Lauthier; María M. Monje Rumi; Paula G. Ragone; Anahí A. Alberti D’Amato; Cecilia Pérez Brandán; Carolina Cura; Alejandro G. Schijman; Christian Barnabé; Michel Tibayrenc; Miguel A. Basombrío; Alejandra Falla; Claudia Herrera; Felipe Guhl; Patricio Diosque

Internal and geographical clustering within Trypanosoma cruzi I (TcI) has been recently revealed by using Multilocus Microsatellite Typing and sequencing of the Spliced-Leader Intergenic Region (SL-IR). In the present work, 14 isolates and 11 laboratory-cloned stocks obtained from a geographically restricted area in Chaco Province, Argentina, were analyzed by PCR and sequencing of SL-IR. We were able to differentiate 8 different genotypes that clustered into 4 groups. One of these groups was classified within the formerly described haplotype A and another one within the recently described SL-IR group E. Both were phylogenetically well-supported. In contrast, none of the stocks from the Chaco province were grouped within the cluster previously named haplotype D despite the fact that they shared a similar microsatellite motif in the SL-IR. No evidence of recombination or gene conversion within these stocks was found. On the other hand, multiple ambiguous alignments in the microsatellite region of SL-IR, affecting the tree topology and relationships among groups were detected. Finally, since there are multiple copies of the SL-IR, and they are arranged in tandem, we discuss how molecular processes affecting this kind of sequences could mislead phylogenetic inference.


Infection, Genetics and Evolution | 2015

Trypanosoma cruzi diversity in the Gran Chaco: mixed infections and differential host distribution of TcV and TcVI.

María M. Monje-Rumi; Cecilia Pérez Brandán; Paula G. Ragone; Nicolás Tomasini; Juan J. Lauthier; Anahí M. Alberti D’Amato; Rubén O. Cimino; Viviana Orellana; Miguel A. Basombrío; Patricio Diosque

The transmission cycles of Trypanosoma cruzi in the Gran Chaco are complex networks involving domestic and wild components, whose interrelationships are not well understood. Knowing the circuit of transmission of the different Discrete Typing Units (DTUs) of T. cruzi in the complex environment of the Chaco region is relevant to understanding how the different components (reservoirs, vectors, ecotopes) interact. In the present study we identified the DTUs infecting humans and dogs in two rural areas of the Gran Chaco in Argentina, using molecular methods which avoid parasite culture. Blood samples of humans and dogs were typified by PCR-DNA blotting and hybridization assays with five specific DNA probes (TcI, TcII, TcIII, TcV and TcVI). PCR analyses were performed on seropositive human and dog samples and showed the presence of T. cruzi DNA in 41.7% (98/235) and 53% (35/66) samples, respectively. The identification of infective DTUs was determined in 83.6% (82/98) and 91.4% (32/35) in human and dog samples, respectively. Single infections (36.7% - 36/98) and a previously not detected high proportion of mixed infections (47.9% - 47/98) were found. In a 15.3% (15/98) of samples the infecting DTU was not identified. Among the single infections TcV was the most prevalent DTU (30.6% - 30/98) in human samples; while TcVI (42.8% - 15/35) showed the highest prevalence in dog samples. TcV/TcVI was the most prevalent mixed infection in humans (32.6% - 32/98); and TcI/TcVI (14.3% - 5/35) in dogs. Significant associations between TcV with humans and TcVI with dogs were detected. For the first time, the presence of TcIII was detected in humans from this region. The occurrence of one human infected whit TcIII (a principally wild DTU) could be suggested the emergence of this, in domestic cycles in the Gran Chaco.


Acta Tropica | 2012

Biological behavior of different Trypanosoma cruzi isolates circulating in an endemic area for Chagas disease in the Gran Chaco region of Argentina

Paula G. Ragone; Cecilia Pérez Brandán; Angel M. Padilla; Mercedes Monje Rumi; Juan J. Lauthier; Anahí M. Alberti D’Amato; Nicolás Tomasini; Rubén O. Cimino; Nélida M. Romero; Marcela Portelli; Julio R. Nasser; Miguel A. Basombrío; Patricio Diosque

The biological behavior of the different Trypanosoma cruzi strains is still unclear and the importance of exploring the relevance of these differences in natural isolates is of great significance. Herein we describe the biological behavior of four T. cruzi isolates circulating sympatrically in a restricted geographic area in Argentina endemic for Chagas Disease. These isolates were characterized as belonging to the Discrete Typing Units (DTUs) TcI, TcIII, TcV and TcVI as shown by Multilocus Enzyme Electrophoresis and Multilocus Sequence Typing. In order to study the natural behavior of the different isolates and to preserve their natural properties, we developed a vector transmission model that allows their maintenance in the laboratory. The model consisted of serial passages of these parasites between insect vectors and mice. Vector-derived parasite forms were then inoculated in C57BL/6J mice and number of parasite in peripheral blood, serological response and histological damage in acute and chronic phases of the infection were measured. Parasites from DTUs TcI, TcIII and TcVI were detected by direct fresh blood examination, while TcV parasites could only be detected by Polimerase Chain Reaction. No significant difference in the anti-T. cruzi antibody response was found during the chronic phase of infection, except for mice infected with TcV parasites where no antibodies could be detected. Histological sections showed that TcI isolate produced more damage in skeletal muscle while TcVI induced more inflammation in the heart. This work shows differential biological behavior among different parasite isolates obtained from the same cycle of transmission, permitting the opportunity to formulate future hypotheses of clinical and epidemiological importance.


Parasitology | 2011

Immuno-enzymatic evaluation of the recombinant TSSA-II protein of Trypanosoma cruzi in dogs and human sera: a tool for epidemiological studies

Rubén O. Cimino; M. Monje Rumi; Paula G. Ragone; Juan J. Lauthier; A. Alberti D'amato; I. R. López Quiroga; José F. Gil; Silvana P. Cajal; Norma Acosta; Marisa Juarez; Alejandro J. Krolewiecki; Viviana Orellana; Rosa Zacca; I. Marcipar; Patricio Diosque; Julio R. Nasser

The rTSSA-II (recombinant Trypomastigote Small Surface II) antigen was evaluated by ELISA to detect anti-Trypanosoma cruzi antibodies in sera from naturally infected dogs and humans. For this evaluation ELISA-rTSSA-II was standardized and groups were classified according to the results obtained through xenodiagnosis, ELISA and PCR. Sensitivity (Se), Specificity (Sp), Kappa index (KI) and area under curve (AUC) were determined. The Se was determined by using 14 sera from dogs infected with T. cruzi VI (TcVI) whereas Sp was determined by using 95 non-chagasic sera by xenodiagnosis, ELISA-Homogenate and PCR. The performance of ELISA-rTSSA-II in dog sera was high (AUC=0·93 and KI=0·91). The Se was 92·85% (1 false negative) and Sp was 100%. Two sera from dogs infected with TcI and 1 with TcIII were negative. For patients infected with T. cruzi, reactivity was 87·8% (36/41), there was only 1 indeterminate, and Sp was 100%. Fifty-four sera from non-chagasic and 68 sera from patients with cutaneous leishmaniasis did not react with rTSS-II. ELISA-rTSSA-II showed a high performance when studying sera from naturally infected dogs and it also presented 100% Sp. This assay could be an important tool to carry out sero-epidemiological surveys on the prevalence of T. cruzi circulating lineages in the region.


PLOS Neglected Tropical Diseases | 2014

Optimized Multilocus Sequence Typing (MLST) Scheme for Trypanosoma cruzi

Patricio Diosque; Nicolás Tomasini; Juan J. Lauthier; Louisa A. Messenger; María M. Monje Rumi; Paula G. Ragone; Anahí Maitén Alberti-D'Amato; Cecilia Pérez Brandán; Christian Barnabé; Michel Tibayrenc; Michael D. Lewis; Martin S. Llewellyn; Michael A. Miles; Matthew Yeo

Trypanosoma cruzi, the aetiological agent of Chagas disease possess extensive genetic diversity. This has led to the development of a plethora of molecular typing methods for the identification of both the known major genetic lineages and for more fine scale characterization of different multilocus genotypes within these major lineages. Whole genome sequencing applied to large sample sizes is not currently viable and multilocus enzyme electrophoresis, the previous gold standard for T. cruzi typing, is laborious and time consuming. In the present work, we present an optimized Multilocus Sequence Typing (MLST) scheme, based on the combined analysis of two recently proposed MLST approaches. Here, thirteen concatenated gene fragments were applied to a panel of T. cruzi reference strains encompassing all known genetic lineages. Concatenation of 13 fragments allowed assignment of all strains to the predicted Discrete Typing Units (DTUs), or near-clades, with the exception of one strain that was an outlier for TcV, due to apparent loss of heterozygosity in one fragment. Monophyly for all DTUs, along with robust bootstrap support, was restored when this fragment was subsequently excluded from the analysis. All possible combinations of loci were assessed against predefined criteria with the objective of selecting the most appropriate combination of between two and twelve fragments, for an optimized MLST scheme. The optimum combination consisted of 7 loci and discriminated between all reference strains in the panel, with the majority supported by robust bootstrap values. Additionally, a reduced panel of just 4 gene fragments displayed high bootstrap values for DTU assignment and discriminated 21 out of 25 genotypes. We propose that the seven-fragment MLST scheme could be used as a gold standard for T. cruzi typing, against which other typing approaches, particularly single locus approaches or systematic PCR assays based on amplicon size, could be compared.


Acta Tropica | 2013

Benznidazole treatment in chronic children infected with Trypanosoma cruzi: serological and molecular follow-up of patients and identification of Discrete Typing Units.

M. Monje Rumi; C. Pérez Brandán; José F. Gil; A.M. Alberti D’Amato; Paula G. Ragone; Juan J. Lauthier; Nicolás Tomasini; Rubén O. Cimino; Viviana Orellana; C.D. Lacunza; Julio R. Nasser; Miguel A. Basombrío; Patricio Diosque

A total of 221 children from two rural settlements in Northeast Argentina were examined for T. cruzi infection. Blood samples were taken for serology tests and PCR assays. In addition, T. cruzi Discrete Typing Units (DTUs) were determined by hybridization with specific DNA probes of the minicircle hypervariable regions (mHVR). Serological results indicated that 26% (57/215) were reactive against T. cruzi antigens. PCR analyses were performed on seropositive samples showing presence of parasite DNA in 31 out of 53 samples (58.5%). All seropositive children underwent specific chemotherapy with Benznidazole (5mg/kg/day) for a period of two months and were monitored two and five years after treatment. Overall the treatment was well tolerated and low side effects were observed. Serological conversion was observed at two years post -treatment in one child form Pampa Ávila and at five years in two children from Tres Estacas. However, at the end of the follow-up period, T. cruzi DNA could not be detected by PCR in samples from treated children, except in two cases. In addition, the results of hybridizations with specific DNA probes showed that DTU TcV was detected in 68% (21/31), TcVI in 7% (2/31) and TcV/VI in 3% (1/31) of the samples. Altogether, results of the follow-up of treated children showed a low rate of seroconversion; however trend toward seroconversion was evident at five years post-treatment. On the other hand, detection of T. cruzi DNA by PCR significantly decreased after Benznidazole treatment. The existence of data regarding serological and molecular follow-ups from controlled studies in the Chaco Region will be important for future treatment efforts against T. cruzi infection in this region. The results obtained in the present study represent a contribution in this regard.


PLOS ONE | 2015

Experimental evidence of biological interactions among different isolates of Trypanosoma cruzi from the Chaco Region.

Paula G. Ragone; Cecilia Pérez Brandán; Mercedes Monje Rumi; Nicolás Tomasini; Juan J. Lauthier; Rubén O. Cimino; Alejandro Uncos; Federico Ramos; Anahí M. Alberti D’Amato; Miguel A. Basombrío; Patricio Diosque

Many infectious diseases arise from co-infections or re-infections with more than one genotype of the same pathogen. These mixed infections could alter host fitness, the severity of symptoms, success in pathogen transmission and the epidemiology of the disease. Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits a high biological variability often correlated with its genetic diversity. Here, we developed an experimental approach in order to evaluate biological interaction between three T. cruzi isolates belonging to different Discrete Typing Units (DTUs TcIII, TcV and TcVI). These isolates were obtained from a restricted geographical area in the Chaco Region. Different mixed infections involving combinations of two isolates (TcIII + TcV, TcIII + TcVI and TcV + TcVI) were studied in a mouse model. The parameters evaluated were number of parasites circulating in peripheral blood, histopathology and genetic characterization of each DTU in different tissues by DNA hybridization probes. We found a predominance of TcVI isolate in blood and tissues respect to TcIII and TcV; and a decrease of the inflammatory response in heart when the damage of mice infected with TcVI and TcIII + TcVI mixture were compared. In addition, simultaneous presence of two isolates in the same tissue was not detected. Our results show that biological interactions between isolates with different biological behaviors lead to changes in their biological properties. The occurrence of interactions among different genotypes of T. cruzi observed in our mouse model suggests that these phenomena could also occur in natural cycles in the Chaco Region.


Infection, Genetics and Evolution | 2014

Preponderant clonal evolution of Trypanosoma cruzi I from Argentinean Chaco revealed by Multilocus Sequence Typing (MLST).

Nicolás Tomasini; Juan J. Lauthier; María M. Monje Rumi; Paula G. Ragone; Anahí M. Alberti D’Amato; Cecilia Pérez Brandán; Miguel A. Basombrío; Patricio Diosque

Trypanosoma cruzi has been historically classified as a species with preponderant clonal evolution (PCE). However, with the advent of highly polymorphic markers and studies at geographically reduced scales, the PCE in T. cruzi was challenged. In fact, some studies have suggested that recombination in T. cruzi lineage I (TcI) is much more frequent than previously believed. Further analyses of TcI populations from different geographical regions of Latin America are needed to examine this hypothesis. In the present study, we contribute to this topic by analyzing the population structure of TcI from a restricted geographical area in the Chaco region, Argentina. We analyzed TcI isolates from different hosts and vectors using a Multilocus Sequence Typing (MLST) approach. These isolates were previously characterized by sequencing the spliced leader intergenic region (SL-IR). Low levels of incongruence and well-supported clusters for MLST dataset were obtained from the analyses. Moreover, high linkage disequilibrium was found and five repeated and overrepresented genotypes were detected. In addition, a good correspondence between SL-IR and MLST was observed which is expected under PCE. However, recombination is not ruled out because five out of 28 pairs of loci were incompatible with strict clonality and one possible genetic exchange event was detected. Overall, our results represent evidence of PCE in TcI from the study area. Finally, considering our findings we discuss the scenario for the genetic structure of TcI.


PLOS Computational Biology | 2017

Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans

Nicolás Tomasini; Paula G. Ragone; Sébastien Gourbière; Juan Pablo Aparicio; Patricio Diosque

People living in areas with active vector-borne transmission of Chagas disease have multiple contacts with its causative agent, Trypanosoma cruzi. Reinfections by T. cruzi are possible at least in animal models leading to lower or even hardly detectable parasitaemia. In humans, although reinfections are thought to have major public health implications by increasing the risk of chronic manifestations of the disease, there is little quantitative knowledge about their frequency and the timing of parasite re-inoculation in the course of the disease. Here, we implemented stochastic agent-based models i) to estimate the rate of re-inoculation in humans and ii) to assess how frequent are reinfections during the acute and chronic stages of the disease according to alternative hypotheses on the adaptive immune response following a primary infection. By using a hybrid genetic algorithm, the models were fitted to epidemiological data of Argentinean rural villages where mixed infections by different genotypes of T. cruzi reach 56% in humans. To explain this percentage, the best model predicted 0.032 (0.008–0.042) annual reinfections per individual with 98.4% of them occurring in the chronic phase. In addition, the parasite escapes to the adaptive immune response mounted after the primary infection in at least 20% of the events of re-inoculation. With these low annual rates, the risks of reinfection during the typically long chronic stage of the disease stand around 14% (4%-18%) and 60% (21%-70%) after 5 and 30 years, with most individuals being re-infected 1–3 times overall. These low rates are better explained by the weak efficiency of the stercorarian mode of transmission than a highly efficient adaptive immune response. Those estimates are of particular interest for vaccine development and for our understanding of the higher risk of chronic disease manifestations suffered by infected people living in endemic areas.

Collaboration


Dive into the Paula G. Ragone's collaboration.

Top Co-Authors

Avatar

Patricio Diosque

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan J. Lauthier

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Nicolás Tomasini

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Miguel A. Basombrío

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Rubén O. Cimino

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Cecilia Pérez Brandán

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Anahí M. Alberti D’Amato

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Julio R. Nasser

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Monje Rumi

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

María M. Monje Rumi

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge