Paula I.P. Soares
Universidade Nova de Lisboa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paula I.P. Soares.
Recent Patents on Anti-cancer Drug Discovery | 2012
Paula I.P. Soares; I. Ferreira; Rui Igreja; Carlos Novo; João P. Borges
Cancer is one of the main causes of death in the world and its incidence increases every day. Current treatments are insufficient and present many breaches. Hyperthermia is an old concept and since early it was established as a cancer treatment option, mainly in superficial cancers. More recently the concept of intracellular hyperthermia emerged wherein magnetic particles are concentrated at the tumor site and remotely heated using an applied magnetic field to achieve hyperthermic temperatures (42-45°C). Many patents have been registered in this area since the year 2000. This review presents the most relevant information, organizing them according to the hyperthermic method used: 1) external Radio-Frequency devices; 2) hyperthermic perfusion; 3) frequency enhancers; 4) apply heating to the target site using a catheter; 5) injection of magnetic and ferroelectric particles; 6) injection of magnetic nanoparticles that may carry a pharmacological active drug. The use of magnetic nanoparticles is a very promising treatment approach since it may be used for diagnostic and treatment. An ideal magnetic nanoparticle would be able to detect and diagnose the tumor, carry a pharmacological active drug to be delivered in the tumor site, apply hyperthermia through an external magnetic field and allow treatment monitoring by magnetic resonance imaging.
Journal of Colloid and Interface Science | 2014
Paula I.P. Soares; Ana M.R. Alves; L.C.J. Pereira; Joana T. Coutinho; I. Ferreira; Carlos Novo; João P. Borges
Iron oxide nanoparticles are having been extensively investigated for several biomedical applications such as hyperthermia and magnetic resonance imaging. However, one of the biggest problems of these nanoparticles is their aggregation. Taking this into account, in this study the influence of three different surfactants (oleic acid, sodium citrate and Triton X-100) each one with various concentrations in the colloidal solutions stability was analyzed by using a rapid and facile method, the variation in the optical absorbance along time. The synthesized nanoparticles through chemical precipitation showed an average size of 9 nm and a narrow size distribution. X-ray diffraction pattern and Fourier Transform Infrared analysis confirmed the presence of pure magnetite. SQUID measurements showed superparamagnetic properties with a blocking temperature around 155 K. In addition it was observed that neither sodium citrate nor Triton X-100 influences the magnetic properties of the nanoparticles. On the other hand, oleic acid in a concentration of 64 mM decreases the saturation magnetization from 67 to 45 emu/g. Oleic acid exhibits a good performance as stabilizer of the iron oxide nanoparticles in an aqueous solution for 24h, for concentrations that lead to the formation of the double layer.
Carbohydrate Polymers | 2016
Paula I.P. Soares; Ana Isabel Sousa; Jorge Carvalho Silva; I. Ferreira; Carlos Novo; João P. Borges
In the present work, two drug delivery systems were produced by encapsulating doxorubicin into chitosan and O-HTCC (ammonium-quaternary derivative of chitosan) nanoparticles. The results show that doxorubicin release is independent of the molecular weight and is higher at acidic pH (4.5) than at physiological pH. NPs with an average hydrodynamic diameter bellow 200nm are able to encapsulate up to 70% and 50% of doxorubicin in the case of chitosan and O-HTCC nanoparticles, respectively. O-HTCC nanoparticles led to a higher amount of doxorubicin released than chitosan nanoparticles, for the same experimental conditions, although the release mechanism was not altered. A burst effect occurs within the first hours of release, reaching a plateau after 24h. Fitting mathematical models to the experimental data led to a concordant release mechanism between most samples, indicating an anomalous or mixed release, which is in agreement with the swelling behavior of chitosan described in the literature.
Carbohydrate Polymers | 2016
Paula I.P. Soares; Diana Machado; César A. T. Laia; L.C.J. Pereira; Joana T. Coutinho; I. Ferreira; Carlos Novo; João P. Borges
Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan.
Gels | 2015
Vanessa Zamora-Mora; Paula I.P. Soares; Coro Echeverria; Rebeca Hernández; Carmen Mijangos
Composite ferrogels were obtained by encapsulation of magnetic nanoparticles at two different concentrations (2.0 and 5.0 % w/v) within mixed agarose/chitosan hydrogels having different concentrations of agarose (1.0, 1.5 and 2.0% (w/v)) and a fixed concentration of chitosan (0.5% (w/v)). The morphological characterization carried out by scanning electron microscopy showed that dried composite ferrogels present pore sizes in the micrometer range. Thermogravimetric measurements showed that ferrogels present higher degradation temperatures than blank chitosan/agarose hydrogels without magnetic nanoparticles. In addition, measurements of the elastic moduli of the composite ferrogels evidenced that the presence of magnetic nanoparticles in the starting aqueous solutions prevents to some extent the agarose gelation achieved by simply cooling chitosan/agarose aqueous solutions. Finally, it is shown that composite chitosan/agarose ferrogels are able to heat in response to the application of an alternating magnetic field so that they can be considered as potential biomaterials to be employed in magnetic hyperthermia treatments.
Carbohydrate Polymers | 2016
Paula I.P. Soares; Ana Isabel Sousa; I. Ferreira; Carlos Novo; João P. Borges
In the present work composite nanoparticles with a magnetic core and a chitosan-based shell were produced as drug delivery systems for doxorubicin (DOX). The results show that composite nanoparticles with a hydrodynamic diameter within the nanometric range are able to encapsulate more DOX than polymeric nanoparticles alone corresponding also to a higher drug release. Moreover the synthesis method of the iron oxide nanoparticles influences the total amount of DOX released and a high content of iron oxide nanoparticles inhibits DOX release. The modelling of the experimental results revealed a release mechanism dominated by Fickian diffusion.
Mini-reviews in Medicinal Chemistry | 2012
Paula I.P. Soares; S.J.R. Dias; Carlos Novo; I. Ferreira; João P. Borges
Osteosarcoma is the most common primary bone tumor in children and adolescents, with a 5-year disease free survival rate of 70%. Current chemotherapy regimens comprise a group of chemotherapeutic agents in which doxorubicin is included. However, tumor resistance to anthracyclines and cardiotoxicity are limiting factors for its usage. Liposomal formulations of doxorubicin improve its anti-cancer effects but are still insufficient. The research in this area has lead to the production of anthracyclines analogues, such as ladirubicin, the leading compound of alkylcyclines. This new anticancer agent has shown promising results in vivo and in vitro, being effective against osteosarcoma cell lines, including those with a multidrug resistant phenotype. In phase I clinical trials, this molecule caused mild side effects and did not induce significant cardiotoxicity at doses ranging from 1 to 16 mg/m(2), resulting in a peak plasma concentration (C(max)) ranging from 0.5 to 1.5 μM. The recommended doses for phase II studies were 12 and 14 mg/m(2) in heavily and minimally pretreated/non-pretreated patients, respectively. Phase II clinical trials in ovary, breast, colorectal cancer, NSCLC and malignant melanoma are underway. Given the improved molecular targeting efficacy of these new compounds, ongoing approaches have sought to improve drug delivery systems, to improve treatment efficacy while reducing systemic toxicity. The combination of these two approaches may be a good start for the discovery of new treatment for osteosarcoma.
RSC Advances | 2017
Jaime Faria; Coro Echeverria; João P. Borges; M. H. Godinho; Paula I.P. Soares
The incorporation of thermosensitive microgels that can act as active sites into polymeric fibers through colloidal electrospinning originates multifunctional, highly porous, and biocompatible membranes suitable for biomedical applications. The use of polyvinylpyrrolidone (PVP), a biocompatible, water-soluble polymer as a fiber template, not only allows the use of a simple set-up to produce composite membranes, but also avoids the use of organic solvents to prepare such systems. Further crosslinking with ultraviolet (UV) radiation avoids membrane dissolution in physiological conditions. Highly porous, UV crosslinked composite membranes with monodisperse mean fiber diameters around 530 nm were successfully produced. These composite membranes showed a Young Modulus of 22 MPa, and an ultimate tensile strength of 3 MPa, accessed in the mechanical tests. Furthermore, the same composite membranes were able to swell about 30 times their weight after 1 hour in aqueous medium. In this work composite multifunctional membranes were designed and extensively studied. PVP, a biocompatible water-soluble polymer, was used as a fiber template to incorporate thermoresponsive poly-(N-isopropylacrylamide) (PNIPAAm)-based microgels into the composite membrane using colloidal electrospinning. The design of multifunctional membranes can be further tailored to several biomedical applications such as temperature-controlled drug delivery systems.
RSC Advances | 2016
Susana C. S. Marques; Paula I.P. Soares; Coro Echeverria; M. H. Godinho; João P. Borges
The strategy of confining stimuli-responsive microgels in electrospun fibres would allow the fabrication of polymeric networks that combine the microgels swelling ability and properties with the interest features of the electrospun fibres. Colloidal electrospinning is an emerging method in which fibres containing microgels can be produced by a single-nozzle and designed through the solution carrier materials. The incorporation of poly(N-isopropylacrylamide) (PNIPAAM) and PNIPAAM–chitosan (PNIPAAM–CS) in poly(ethyleneoxyde) (PEO) fibres via colloidal electrospinning producing composite fibres was the main purpose of the present work, which was confirmed by means of Scanning Electron Microscopy (SEM). Dynamic light scattering was used to analyse the microgels hydrodynamic diameter ranging up to 900 nm depending on the composition and temperature of the surrounding medium. By performing a statistical analysis the relationship of the processing variables over the fibre size was evaluated following the response surface methodology (RSM). From the set of parameters aimed to minimize the fibre diameter, composite fibres with an average diameter of 63 nm were produced. Only the as-prepared microgels with higher monodispersity provided “bead-on-a-string” morphologies.
Gels | 2018
Coro Echeverria; Susete N. Fernandes; M. H. Godinho; João P. Borges; Paula I.P. Soares
One strategy that has gained much attention in the last decades is the understanding and further mimicking of structures and behaviours found in nature, as inspiration to develop materials with additional functionalities. This review presents recent advances in stimuli-responsive gels with emphasis on functional hydrogels and microgels. The first part of the review highlights the high impact of stimuli-responsive hydrogels in materials science. From macro to micro scale, the review also collects the most recent studies on the preparation of hybrid polymeric microgels composed of a nanoparticle (able to respond to external stimuli), encapsulated or grown into a stimuli-responsive matrix (microgel). This combination gave rise to interesting multi-responsive functional microgels and paved a new path for the preparation of multi-stimuli “smart” systems. Finally, special attention is focused on a new generation of functional stimuli-responsive polymer hydrogels able to self-shape (shape-memory) and/or self-repair. This last functionality could be considered as the closing loop for smart polymeric gels.