Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula M. Tribelli is active.

Publication


Featured researches published by Paula M. Tribelli.


Extremophiles | 2009

Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation

Nicolás Daniel Ayub; Paula M. Tribelli; Nancy I. López

Polyhydroxyalkanoates (PHAs) are highly reduced bacterial storage compounds that increase fitness in changing environments. We have previously shown that phaRBAC genes from the Antarctic bacterium Pseudomonas sp. 14-3 are located in a genomic island containing other genes probably related with its adaptability to cold environments. In this paper, Pseudomonas sp. 14-3 and its PHA synthase-minus mutant (phaC) were used to asses the effect of PHA accumulation on the adaptability to cold conditions. The phaC mutant was unable to grow at 10°C and was more susceptible to freezing than its parent strain. PHA was necessary for the development of the oxidative stress response induced by cold treatment. Addition of reduced compounds cystine and gluthathione suppressed the cold sensitive phenotype of the phaC mutant. Cold shock produced very rapid degradation of PHA in the wild type strain. The NADH/NAD ratio and NADPH content, estimated by diamide sensitivity, decreased strongly in the mutant after cold shock while only minor changes were observed in the wild type. Accordingly, the level of lipid peroxidation in the mutant strain was 25-fold higher after temperature downshift. We propose that PHA metabolism modulates the availability of reducing equivalents, contributing to alleviate the oxidative stress produced by low temperature.


Current Microbiology | 2009

Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate) Producer Isolated from an Antarctic Environment

Nancy I. López; M. Julia Pettinari; Erko Stackebrandt; Paula M. Tribelli; Markus Pötter; Alexander Steinbüchel; Beatriz S. Méndez

A Gram-negative, mobile, rod-shaped, non-spore-forming bacterium (strain 14-3T) was isolated from a temporary pond in Antarctica. On the basis of 16S rRNA gene sequence similarity, strain 14-3T was shown to belong to the genus Pseudomonas sensu stricto. Physiological and biochemical tests supported the phylogenetic affiliation. Strain 14-3T is closely related to Pseudomonas veronii DSM 11331T, sharing 99.7% sequence similarity. DNA–DNA hybridization experiments between the two strains showed only moderate reassociation similarity (35.1%). Tests for arginine dihydrolase and nitrate reduction were positive, while those for denitrification, indol production, glucose acidification, urease, ß-galactosidase, esculin, caseine and gelatin hydrolysis were negative. Growth of this bacterium occurred in a range from 4 to 37°C but not at 42°C. It accumulated poly(3-hydroxybutyrate) when grown on sodium octanoate medium. Strain 14-3T therefore represents the type strain of a new species, for which the name Pseudomonas extremaustralis sp. nov. is proposed. The type strain 14-3T has been deposited as DSM 17835T and as CIP 109839T.


Extremophiles | 2011

Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions

Paula M. Tribelli; Nancy I. López

Polyhydroxyalkanoates (PHAs) are highly reduced bacterial storage compounds that increase fitness in changing environments. It has previously shown that polyhydroxybutyrate (PHB) accumulation is essential during the growth under cold conditions. In this work, the relationship between PHB accumulation and biofilm development at low temperature was investigated. P. extremaustralis, an Antarctic strain able to accumulate PHB, and its phaC mutant, impaired in the synthesis of this polymer, were used to analyze microaerobic growth, biofilm development, EPS content and motility. PHB accumulation increased motility and survival of planktonic cells in the biofilms developed by P. extremaustralis under cold conditions. Microaerobic conditions rescued the cold growth defect of the mutant strain. The PHB accumulation capability could constitute an adaptative advantage for the colonization of new ecological niches in stressful environments.


Biodegradation | 2012

Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis

Paula M. Tribelli; Carla Di Martino; Nancy I. López; Laura J. Raiger Iustman

Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions—in biofilm versus shaken flask cultures—as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments.


Journal of Bacteriology | 2012

Genome Sequence of the Polyhydroxybutyrate Producer Pseudomonas extremaustralis, a Highly Stress-Resistant Antarctic Bacterium

Paula M. Tribelli; Laura J. Raiger Iustman; Mariela V. Catone; Carla Di Martino; Santiago Revale; Beatriz S. Méndez; Nancy I. López

Pseudomonas extremaustralis 14-3b presents genes involved in the synthesis of different polyhydroxyalkanoates, in tolerance and degradation of pollutants, and in microaerobic metabolism. Several genomic islands were detected. Genetic machinery could contribute to the adaptability to stressful conditions. This is the first genome sequence reported from a Pseudomonas isolated from cold environments.


Extremophiles | 2015

Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance.

Laura J. Raiger Iustman; Paula M. Tribelli; José G. Ibarra; Mariela V. Catone; Esmeralda C. Solar Venero; Nancy I. López

The genome of the Antarctic bacterium Pseudomonas extremaustralis was analyzed searching for genes involved in environmental adaptability focusing on anaerobic metabolism, osmoregulation, cold adaptation, exopolysaccharide production and degradation of complex compounds. Experimental evidences demonstrated the functionality of several of these pathways, including arginine and pyruvate fermentation, alginate production and growth under cold conditions. Phylogenetic analysis along with genomic island prediction allowed the detection of genes with probable foreign origin such as those coding for acetate kinase, osmotic resistance and colanic acid biosynthesis. These findings suggest that in P. extremaustralis the horizontal transfer events and/or gene redundancy could play a key role in the survival under unfavorable conditions. Comparative genome analysis of these traits in other representative Pseudomonas species highlighted several similarities and differences with this extremophile bacterium.


Journal of Molecular Microbiology and Biotechnology | 2010

Oxygen-Sensitive Global Regulator, Anr, Is Involved in the Biosynthesis of Poly(3-Hydroxybutyrate) in Pseudomonas extremaustralis

Paula M. Tribelli; Beatriz S. Méndez; Nancy I. López

We analyzed the influence of the redox global regulator Anr on the accumulation of poly(3-hydroxybutyrate) (PHB) in Pseudomonas extremaustralis. Anr regulates a set of genes in the aerobic-anaerobic transition including genes involved in nitrate reduction and arginine fermentation. An anr mutant was constructed using PCR-based strategies. The wild-type strain was able to grow in both microaerobic and anaerobic conditions using nitrate as the terminal electron acceptor while the mutant strain was unable to grow under anaerobic conditions. In bioreactor cultures, PHB content in the wild-type strain was higher in microaerobic and anaerobic cultures compared with highly aerated cultures. The mutant strain showed decreased PHB levels in both aerobic and microaerobic conditions compared with the wild-type strain. Inactivation of anr led to decreased expression of phaC and phaR genes as demonstrated in real-time RT-PCR experiments. Associated with the PHB gene region, two putative binding sites for Anr were found that, in line with the phenotype observed in bioreactor cultures, suggest a role of this regulator in PHB biosynthesis.


Environmental Microbiology Reports | 2015

Diversity of small RNAs expressed in Pseudomonas species

Mara Gomez-Lozano; Rasmus Lykke Marvig; Carlos Molina-Santiago; Paula M. Tribelli; Juan-Luis Ramos; Søren Molin

RNA sequencing (RNA-seq) has revealed several hundreds of previously undetected small RNAs (sRNAs) in all bacterial species investigated, including strains of Pseudomonas aeruginosa, Pseudomonas putida and Pseudomonas syringae. Nonetheless, only little is known about the extent of conservation of expressed sRNAs across strains and species. In this study, we have used RNA-seq to identify sRNAs in P. putida DOT-T1E and Pseudomonas extremaustralis 14-3b. This is the first strain of P. extremaustralis and the second strain of P. putida to have their transcriptomes analysed for sRNAs, and we identify the presence of around 150 novel sRNAs in each strain. Furthermore, we provide a comparison based on sequence conservation of all the sRNAs detected by RNA-seq in the Pseudomonas species investigated so far. Our results show that the extent of sRNA conservation across different species is very limited. In addition, when comparing the sRNAs expressed in different strains of the same species, we observe that numerous sRNAs exhibit a strain-specific expression pattern. These results support the idea that the evolution of most bacterial sRNAs is rapid, which limits the extent of both interspecies and intraspecies conservation.


Microbiology | 2013

Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis.

Paula M. Tribelli; Pablo I. Nikel; Oscar J. Oppezzo; Nancy I. López

The role of Anr in oxidative stress resistance was investigated in Pseudomonas extremaustralis, a polyhydroxybutyrate-producing Antarctic bacterium. The absence of Anr caused increased sensitivity to hydrogen peroxide under low oxygen tension. This phenomenon was associated with a decrease in the redox ratio, higher oxygen consumption and higher reactive oxygen species production. Physiological responses of the mutant to the oxidized state included an increase in NADP(H) content, catalase activity and exopolysaccharide production. The wild-type strain showed a sharp decrease in the reduced thiol pool when exposed to hydrogen peroxide, not observed in the mutant strain. In silico analysis of the genome sequence of P. extremaustralis revealed putative Anr binding sites upstream from genes related to oxidative stress. Genes encoding several chaperones and cold shock proteins, a glutathione synthase, a sulfate transporter and a thiol peroxidase were identified as potential targets for Anr regulation. Our results suggest a novel role for Anr in oxidative stress resistance and in redox balance maintenance under conditions of restricted oxygen supply.


PLOS ONE | 2013

The global anaerobic regulator Anr, is involved in cell attachment and aggregation influencing the first stages of biofilm development in Pseudomonas extremaustralis.

Paula M. Tribelli; Anthony G. Hay; Nancy I. López

Pseudomonas extremaustralis is a versatile Antarctic bacterium, able to grow under microaerobic and anaerobic conditions and is related to several non-pathogenic Pseudomonads. Here we report on the role of the global anaerobic regulator Anr, in the early steps of P. extremaustralis biofilm development. We found that the anr mutant was reduced in its ability to attach, to form aggregates and to display twitching motility but presented higher swimming motility than the wild type. In addition, microscopy revealed that the wild type biofilm contained more biomass and was thicker, but were less rough than that of the anr mutant. In silico analysis of the P. extremaustralis genome for Anr-like binding sites led to the identification of two biofilm-related genes as potential targets of this regulator. When measured using Quantitative Real Time PCR, we found that the anr mutant expressed lower levels of pilG, which encodes a component of Type IV pili and has been previously implicated in cellular adhesion. Levels of morA, involved in signal transduction and flagella development, were also lower in the mutant. Our data suggest that under low oxygen conditions, such as those encountered in biofilms, Anr differentially regulates aggregation and motility thus affecting the first stages of biofilm formation.

Collaboration


Dive into the Paula M. Tribelli's collaboration.

Top Co-Authors

Avatar

Nancy I. López

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Beatriz S. Méndez

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla Di Martino

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan José Cazzulo

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Mariela V. Catone

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Søren Molin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Christine Bäuerl

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge