Paula Monalisa Nogueira
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paula Monalisa Nogueira.
Biochimica et Biophysica Acta | 2012
Rafael Ramiro de Assis; Izabela Coimbra Ibraim; Paula Monalisa Nogueira; Rodrigo P. Soares; Salvatore J. Turco
BACKGROUND Protozoan parasites of the genus Leishmania cause a number of important diseases in humans and undergo a complex life cycle, alternating between a sand fly vector and vertebrate hosts. The parasites have a remarkable capacity to avoid destruction in which surface molecules are determinant for survival. Amongst the many surface molecules of Leishmania, the glycoconjugates are known to play a central role in host-parasite interactions and are the focus of this review. SCOPE OF THE REVIEW The most abundant and best studied glycoconjugates are the Lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs). This review summarizes the main studies on structure and biological functions of these molecules in New World Leishmania species. MAJOR CONCLUSIONS LPG and GIPLs are complex molecules that display inter- and intraspecies polymorphisms. They are key elements for survival inside the vector and to modulate the vertebrate immune response during infection. GENERAL SIGNIFICANCE Most of the studies on glycoconjugates focused on Old World Leishmania species. Here, it is reported some of the studies involving New World species and their biological significance on host-parasite interaction. This article is part of a Special Issue entitled Glycoproteomics.
The Journal of Infectious Diseases | 2014
Natalia Tavares; Théo Araújo-Santos; Lilian Afonso; Paula Monalisa Nogueira; Ulisses G. Lopes; Rodrigo P. Soares; Patricia T. Bozza; Christianne Bandeira-Melo; Valéria Matos Borges; Cláudia Brodskyn
Neutrophils are rapidly recruited to the site of Leishmania infection and play an active role in capturing and killing parasites. They are the main source of leukotriene B4 (LTB4), a potent proinflammatory lipid mediator. However, the role of LTB4 in neutrophil infection by Leishmania amazonensis is not clear. In this study, we show that L. amazonensis or its lipophosphoglycan can induce neutrophil activation, degranulation, and LTB4 production. Using pharmacological inhibitors of leukotriene synthesis, our findings reveal an LTB4-driven autocrine/paracrine regulatory effect. In particular, neutrophil-derived LTB4 controls L. amazonensis killing, degranulation, and reactive oxygen species production. In addition, L. amazonensis infection induces an early increase in Toll-like receptor 2 expression, which facilitates parasite internalization. Nuclear factor kappa B (NFkB) pathway activation represents a required upstream event for L. amazonensis–induced LTB4 synthesis. These leishmanicidal mechanisms mediated by neutrophil-derived LTB4 act through activation of its receptor, B leukotriene receptor 1 (BLT1).
Journal of extracellular vesicles | 2015
Paula Monalisa Nogueira; Kleber Silva Ribeiro; Amanda Cardoso de Oliveira Silveira; João Henrique Campos; Olindo Assis Martins-Filho; Samantha Ribeiro Béla; Marco A. Campos; Natalia Lima Pessoa; Walter Colli; Maria Júlia M. Alves; Rodrigo P. Soares; Ana Claudia Torrecilhas
Trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas Disease, shed extracellular vesicles (EVs) enriched with glycoproteins of the gp85/trans-sialidase (TS) superfamily and other α-galactosyl (α-Gal)-containing glycoconjugates, such as mucins. Here, purified vesicles from T. cruzi strains (Y, Colombiana, CL-14 and YuYu) were quantified according to size, intensity and concentration. Qualitative analysis revealed differences in their protein and α-galactosyl contents. Later, those polymorphisms were evaluated in the modulation of immune responses (innate and in the chronic phase) in C57BL/6 mice. EVs isolated from YuYu and CL-14 strains induced in macrophages higher levels of proinflammatory cytokines (TNF-α and IL-6) and nitric oxide via TLR2. In general, no differences were observed in MAPKs activation (p38, JNK and ERK 1/2) after EVs stimulation. In splenic cells derived from chronically infected mice, a different modulation pattern was observed, where Colombiana (followed by Y strain) EVs were more proinflammatory. This modulation was independent of the T. cruzi strain used in the mice infection. To test the functional importance of this modulation, the expression of intracellular cytokines after in vitro exposure was evaluated using EVs from YuYu and Colombiana strains. Both EVs induced cytokine production with the appearance of IL-10 in the chronically infected mice. A high frequency of IL-10 in CD4+ and CD8+ T lymphocytes was observed. A mixed profile of cytokine induction was observed in B cells with the production of TNF-α and IL-10. Finally, dendritic cells produced TNF-α after stimulation with EVs. Polymorphisms in the vesicles surface may be determinant in the immunopathologic events not only in the early steps of infection but also in the chronic phase.
PLOS Neglected Tropical Diseases | 2016
Paula Monalisa Nogueira; Rafael Ramiro de Assis; Ana Claudia Torrecilhas; Elvira M. Saraiva; Natalia Lima Pessoa; Marco A. Campos; Eric Fabrício Marialva; Claudia M Ríos-Velásquez; Felipe Ac Pessoa; Nágila Francinete Costa Secundino; Jeronimo Marteleto Nunes Rugani; Elsa Nieves; Salvatore J. Turco; Maria Norma Melo; Rodrigo P. Soares
The immunomodulatory properties of lipophosphoglycans (LPG) from New World species of Leishmania have been assessed in Leishmania infantum and Leishmania braziliensis, the causative agents of visceral and cutaneous leishmaniasis, respectively. This glycoconjugate is highly polymorphic among species with variation in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Here, the immunomodulatory activity of LPGs from Leishmania amazonensis, the causative agent of diffuse cutaneous leishmaniasis, was evaluated in two strains from Brazil. One strain (PH8) was originally isolated from the sand fly and the other (Josefa) was isolated from a human case. The ability of purified LPGs from both strains was investigated during in vitro interaction with peritoneal murine macrophages and CHO cells and in vivo infection with Lutzomyia migonei. In peritoneal murine macrophages, the LPGs from both strains activated TLR4. Both LPGs equally activate MAPKs and the NF-κB inhibitor p-IκBα, but were not able to translocate NF-κB. In vivo experiments with sand flies showed that both stains were able to sustain infection in L. migonei. A preliminary biochemical analysis indicates intraspecies variation in the LPG sugar moieties. However, they did not result in different activation profiles of the innate immune system. Also those polymorphisms did not affect infectivity to the sand fly.
Bioinorganic Chemistry and Applications | 2013
Marcele N. Rocha; Paula Monalisa Nogueira; Cynthia Demicheli; Ludmila Gonçalvez de Oliveira; Meiriane Mariano da Silva; Frédéric Frézard; Maria Norma Melo; Rodrigo P. Soares
Leishmania amazonensis is the etiologic agent of the cutaneous and diffuse leishmaniasis often associated with drug resistance. Lapachol [2-hydroxy-3-(3′-methyl-2-butenyl)-1,4-naphthoquinone] displays a wide range of antimicrobial properties against many pathogens. In this study, using the classic microscopic in vitro model, we have analyzed the effects of a series of lapachol and chlorides complexes with antimony (V), bismuth (V), and tin (IV) against L. amazonensis. All seven compounds exhibited antileishmanial activity, but most of the antimony (V) and bismuth (V) complexes were toxic against human HepG2 cells and murine macrophages. The best IC50 values (0.17 ± 0.03 and 0.10 ± 0.11 μg/mL) were observed for Tin (IV) complexes (3) [(Lp)(Ph3Sn)] and (6) (Ph3SnCl2), respectively. Their selective indexes (SIs) were 70.65 and 120.35 for HepG2 cells, respectively. However, while analyzing murine macrophages, the SI decreased. Those compounds were moderately toxic for HepG2 cells and toxic for murine macrophages, still underlying the need of chemical modification in this class of compounds.
Parasitology International | 2015
Luiz Felipe D. Passero; Rafael Ramiro de Assis; Thays N.F. da Silva; Paula Monalisa Nogueira; Diego H. Macedo; Natalia Lima Pessoa; Marco A. Campos; Márcia Dalastra Laurenti; Rodrigo P. Soares
In this work, some aspects of the glycobiology of Leishmania shawi were examined, as it is a causative agent of cutaneous leishmaniasis in the New World. Additionally, the interaction of L. shawis main glycoconjugates [lipophosphoglycan (LPG) and glycoinositolphospholipids (GIPLs)] with macrophages was evaluated in vitro. L. shawi LPG was devoid of side-chains in its repeat units, whereas monosaccharide analysis showed that GIPLs were suggestive of mannose-rich (type I or hybrid). In order to evaluate the biological roles of those molecules, BALB/c resident peritoneal macrophages were incubated with these glycoconjugates for 24h, and the levels of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-12p70 and IL-10, were determined. In general, the GIPLs exhibited a greater proinflammatory role than the LPGs did. However, for the first time, the GIPLs from this species were able to trigger the production of IL-10, an anti-inflammatory cytokine. In conclusion, L. shawi glycoconjugates were able to interact with the innate immune compartment. These data reinforce the role of parasite glycoconjugates during parasite and host cell interactions.
Parasites & Vectors | 2015
Larissa Ferreira Paranaíba; Rafael Ramiro de Assis; Paula Monalisa Nogueira; Ana Claudia Torrecilhas; João Henrique Campos; Amanda Cardoso de Oliveira Silveira; Olindo Assis Martins-Filho; Natalia Lima Pessoa; Marco A. Campos; Patrícia Martins Parreiras; Maria Norma Melo; Nelder F. Gontijo; Rodrigo P. Soares
BackgroundLeishmania enriettii is a species non-infectious to man, whose reservoir is the guinea pig Cavia porcellus. Many aspects of the parasite-host interaction in this model are unknown, especially those involving parasite surface molecules. While lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) of Leishmania species from the Old and New World have already been described, glycoconjugates of L. enriettii and their importance are still unknown.MethodsMice peritoneal macrophages from C57BL/6 and knock-out (TLR2 −/−, TLR4 −/−) were primed with IFN-γ and stimulated with purified LPG and GIPLs from both species. Nitric oxide and cytokine production were performed. MAPKs (p38 and JNK) and NF-kB activation were evaluated in J774.1 macrophages and CHO cells, respectively.ResultsLPGs were extracted, purified and analysed by western-blot, showing that LPG from L88 strain was longer than that of Cobaia strain. LPGs and GIPLs were depolymerised and their sugar content was determined. LPGs from both strains did not present side chains, having the common disaccharide Gal(β1,4)Man(α1)-PO4. The GIPL from L88 strain presented galactose in its structure, suggestive of type II GIPL. On the other hand, the GIPL of Cobaia strain presented an abundance of glucose, a characteristic not previously observed. Mice peritoneal macrophages from C57BL/6 and knock-outs (TLR2 -/- and TLR4 -/-) were primed with IFN-γ and stimulated with glycoconjugates and live parasites. No activation of NO or cytokines was observed with live parasites. On the other hand, LPGs and GIPLs were able to activate the production of NO, IL-6, IL-12 and TNF–α preferably via TRL2. However, in CHO cells, only GIPLs were able to activate TRL2 and TRL4. In vivo studies using male guinea pigs (Cavia porcellus) showed that only strain L88 was able to develop more severe ulcerated lesions especially in the presence of salivary gland extract (SGE).ConclusionThe two L. enriettii strains exhibited polymorphisms in their LPGs and GIPLs and those features may be related to a more pro-inflammatory profile in the L88 strain.
Parasitology International | 2014
Petr Volf; Paula Monalisa Nogueira; Jitka Myskova; Salvatore J. Turco; Rodrigo P. Soares
The lipophosphoglycan (LPG) of Leishmania major has a major role in the attachment to Phlebotomus papatasi midgut. Here, we investigated the comparative structural features of LPG of L. turanica, another species transmitted by P. papatasi. The mAb WIC 79.3, specific for terminal Gal(β1,3) side-chains, strongly reacted with L. turanica LPG. In contrast, L. turanica LPG was not recognized by arabinose-specific mAb 3F12. In conclusion, LPGs from L. major and L. turanica are similar, with the latter being less arabinosylated than L. majors. The high galactose content in L. turanica LPG is consistent with its predicted recognition by P. papatasi lectin PpGalec.
Diagnostic Microbiology and Infectious Disease | 2011
Alessandra C. Pinheiro; Marcele N. Rocha; Paula Monalisa Nogueira; Thaís C.M. Nogueira; Liana F. Jasmim; Marcus V. N. de Souza; Rodrigo P. Soares
Leishmania amazonensis is the etiologic agent of the cutaneous and diffuse leishmaniasis. This species is often associated with drug resistance, and the conventional treatments exhibit high toxicity for patients. Therefore, the search for new antileishmanial compounds is urgently needed since there is no vaccine available. In this study, using the in vitro traditional drug screening test, we have analyzed the effects of a series of diaminoalkanes monoprotected with t-butyloxycarbonyl (BOC) against L. amazonensis. Among the 18 tested compounds, 6 exhibited antileishmanial activity (2, 7-9, 17, and 18). Best IC(50) values (10.39 ± 0.27 and 3.8 ± 0.42 μg/mL) were observed for compounds 17 and 18 (H(2)N(CH(2))nNHBoc, n = 10 and 12), respectively. Although those compounds had higher lipophilicity as indicated by their cLog P values, compound 17 was very toxic. Determination of the selective indexes indicated that 50% of the active compounds were very toxic for HepG2 cells. However, compounds 2, 8, and 18 had good lipophilicity and were less toxic among all polyamine derivatives tested. The chemical properties of antileishmanial diamine derivatives, such as lipophilicity and cytotoxicity, are relevant factors for the design of new drugs. A higher lipophilicity is likely to improve the chances of reaching this intracellular parasite.
Transgenic Research | 2010
Maíra N. Santos; Paula Monalisa Nogueira; Fernando Braga Stehling Dias; Denise Valle; Luciano Andrade Moreira
Vector-born diseases cause millions of deaths every year globally. Alternatives for the control of diseases such as malaria and dengue fever are urgently needed and the use of transgenic mosquitoes that block parasite/virus is a sound strategy to be used within control programs. However, prior to use transgenic mosquitoes as control tools, it is important to study their fitness since different biological aspects might influence their ability to disseminate and compete with wild populations. We previously reported the construction of four transgenic Aedes fluviatilis mosquito lines expressing a Plasmodium- blocking molecule (mutated bee venom phospholipase A2–mPLA2). Presently we studied two aspects of their fitness: body size, that has been used as a fitness-related status, and the expression of major enzymes classes involved in the metabolism of xenobiotics, including insecticides. Body size analysis (recorded by geometric wing morphometrics) indicated that both male and female mosquitoes were larger than the non-transgenic counterparts, suggesting that this characteristic might have an impact on their overall fitness. By contrast, no significant difference in the activity of enzymes related to metabolic insecticide resistance was detected in transgenic mosquitoes. The implication on fitness advantage of these features, towards the implementation of this strategy, is further discussed.