Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula Monteiro de Souza is active.

Publication


Featured researches published by Paula Monteiro de Souza.


Brazilian Journal of Microbiology | 2010

Application of microbial α-amylase in industry - A review

Paula Monteiro de Souza; Pérola de Oliveira Magalhães

Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.


Brazilian Journal of Microbiology | 2015

A biotechnology perspective of fungal proteases.

Paula Monteiro de Souza; Mona Lisa de Assis Bittencourt; Carolina Canielles Caprara; Marcela Medeiros de Freitas; Renata Paula Coppini de Almeida; Dâmaris Silveira; Yris Maria Fonseca; Edivaldo Ximenes Ferreira Filho; Adalberto Pessoa Junior; Pérola Oliveira Magalhães

Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.


PLOS ONE | 2012

Plants from Brazilian Cerrado with Potent Tyrosinase Inhibitory Activity

Paula Monteiro de Souza; Silvia Taveira Elias; Luiz Alberto Simeoni; José Elias de Paula; Sueli Maria Gomes; Eliete Neves Silva Guerra; Yris Maria Fonseca; Elton Clementino Silva; Dâmaris Silveira; Pérola Oliveira Magalhães

The increased amount of melanin leads to skin disorders such as age spots, freckles, melasma and malignant melanoma. Tyrosinase is known to be the key enzyme in melanin production. Plants and their extracts are inexpensive and rich resources of active compounds that can be utilized to inhibit tyrosinase as well as can be used for the treatment of dermatological disorders associated with melanin hyperpigmentation. Using in vitro tyrosinase inhibitory activity assay, extracts from 13 plant species from Brazilian Cerrado were evaluated. The results showed that Pouteria torta and Eugenia dysenterica extracts presented potent in vitro tyrosinase inhibition compared to positive control kojic acid. Ethanol extract of Eugenia dysenterica leaves showed significant (p<0.05) tyrosinase inhibitory activity exhibiting the IC50 value of 11.88 µg/mL, compared to kojic acid (IC50 value of 13.14 µg/mL). Pouteria torta aqueous extract leaves also showed significant inhibitory activity with IC50 value of 30.01 µg/mL. These results indicate that Pouteria torta and Eugenia dysenterica extracts and their isolated constituents are promising agents for skin-whitening or antimelanogenesis formulations.


PLOS ONE | 2016

Extracts of Morus nigra L. Leaves Standardized in Chlorogenic Acid, Rutin and Isoquercitrin: Tyrosinase Inhibition and Cytotoxicity

Marcela Medeiros de Freitas; Pedro Ribeiro Fontes; Paula Monteiro de Souza; Christopher William Fagg; Eliete Neves Silva Guerra; Yanna Karla de Medeiros Nóbrega; Damaris Silveira; Yris Maria Fonseca-Bazzo; Luiz Alberto Simeoni; Mauricio Homem-de-Mello; Pérola Oliveira Magalhães

Melanogenesis is a process responsible for melanin production, which is stored in melanocytes containing tyrosinase. Inhibition of this enzyme is a target in the cosmetics industry, since it controls undesirable skin conditions such as hyperpigmentation due to the overproduction of melanin. Species of the Morus genus are known for the beneficial uses offered in different parts of its plants, including tyrosinase inhibition. Thus, this project aimed to study the inhibitory activity of tyrosinase by extracts from Morus nigra leaves as well as the characterization of its chromatographic profile and cytotoxicity in order to become a new therapeutic option from a natural source. M. nigra leaves were collected, pulverized, equally divided into five batches and the standardized extract was obtained by passive maceration. There was no significant difference between batches for total solids content, yield and moisture content, which shows good reproducibility of the extraction process. Tyrosinase enzymatic activity was determined for each batch, providing the percentage of enzyme inhibition and IC50 values obtained by constructing dose-response curves and compared to kojic acid, a well-known tyrosinase inhibitor. High inhibition of tyrosinase activity was observed (above 90% at 15.625 μg/mL). The obtained IC50 values ranged from 5.00 μg/mL ± 0.23 to 8.49 μg/mL ± 0.59 and were compared to kojic acid (3.37 μg/mL ± 0.65). High Performance Liquid Chromatography analysis revealed the presence of chlorogenic acid, rutin and, its major compound, isoquercitrin. The chromatographic method employed was validated according to ICH guidelines and the extract was standardized using these polyphenols as markers. Cytotoxicity, assessed by MTT assay, was not observed on murine melanomas, human keratinocytes and mouse fibroblasts in tyrosinase IC50 values. This study demonstrated the potential of M. nigra leaf extract as a promising whitening agent of natural source against skin hyperpigmentation.


International Journal of Biological Macromolecules | 2015

Kinetic and thermodynamic studies of a novel acid protease from Aspergillus foetidus

Paula Monteiro de Souza; Bahar Aliakbarian; Edivaldo Ximenes Ferreira Filho; Pérola Oliveira Magalhães; Adalberto Pessoa Junior; Attilio Converti; Patrizia Perego

The kinetics of a thermostable extracellular acid protease produced by an Aspergillus foetidus strain was investigated at different pH, temperatures and substrate concentrations. The enzyme exhibited maximal activity at pH 5.0 and 55°C, and its irreversible deactivation was well described by first-order kinetics. When temperature was raised from 55 to 70°C, the deactivation rate constant increased from 0.018 to 5.06h(-1), while the half-life decreased from 37.6 to 0.13h. The results of activity collected at different temperatures were then used to estimate, the activation energy of the hydrolysis reaction (E*=19.03kJ/mol) and the standard enthalpy variation of reversible enzyme unfolding (ΔH°U=19.03kJ/mol). The results of residual activity tests carried out in the temperature range 55-70°C allowed estimating the activation energy (E(*)d=314.12kJ/mol), enthalpy (311.27≤(ΔH°d≤311.39kJ/mol), entropy (599.59≤ΔS(*)d≤610.49kJ/mol K) and Gibbs free energy (103.18≤ΔG(*)d≤113.87kJ/mol) of the enzyme irreversible denaturation. These thermodynamic parameters suggest that this new protease is highly thermostable and could be important for industrial applications. To the best of our knowledge, this is the first report on thermodynamic parameters of an acid protease produced by A. foetidus.


Critical Reviews in Oncology Hematology | 2017

Optimization and purification of l-asparaginase from fungi: A systematic review

Paula Monteiro de Souza; Marcela Medeiros de Freitas; Samuel Leite Cardoso; Adalberto Pessoa; Eliete Neves Silva Guerra; Pérola Oliveira Magalhães

The purpose of this systematic review was to identify the available literature of the l-asparaginase producing fungi. This study followed the Preferred Reporting Items for Systematic Reviews. The search was conducted on five databases: LILACS, PubMed, Science Direct, Scopus and Web of Science up until July 20th, 2016, with no time or language restrictions. The reference list of the included studies was crosschecked and a partial gray literature search was undertaken. The methodology of the selected studies was evaluated using GRADE. Asparaginase production, optimization using statistical design, purification and characterization were the main evaluated outcomes. Of the 1686 initially gathered studies, 19 met the inclusion criteria after a two-step selection process. Nine species of fungi were reported in the selected studies, out of which 13 studies optimized the medium composition using statistical design for enhanced asparaginase production and six reported purification and characterization of the enzyme. The genera Aspergillus were identified as producers of asparaginase in both solid and submerged fermentation and l-asparagine was the amino acid most used as nitrogen source. This systematic review demonstrated that different fungi produce l-asparaginase, which possesses a potential in leukemia treatment. However, further investigations are required to confirm the promising effect of these fungal enzymes.


Biotechnology and Applied Biochemistry | 2015

Extraction protease expressed by Penicillium fellutanum from the Brazilian savanna using poly(ethylene glycol)/sodium polyacrylate/NaCl aqueous two‐phase system

Kleber Vânio Gomes Barros; Paula Monteiro de Souza; Samuel L. Cardoso; Leonardo L. Borges; Edivaldo X. F. Filho; Adalberto P. Junior; Pérola Oliveira Magalhães

The partitioning of protease expressed by Penicillium fellutanum from the Brazilian savanna in a novel inexpensive and stable aqueous two‐phase system (ATPS) composed of poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) was studied in this work using factorial design. The ATPS is formed by mixing both polymers with a salt (NaCl) and fermented broth of P. fellutanum. The effects of molar mass (2,000, 4,000, and 6,000 g⋅mol−1) and concentration (6, 8, and 10 wt%) of PEG and that of NaPA concentration (6, 8, and 10 wt%) on protease partitioning (K) at 25 °C were studied. A two‐level factorial design (23) was implemented. The effect of Na2SO4 concentration (5, 10, and 15 wt%) on the reextraction of the enzyme was also analyzed. The partition coefficient K ranged from 77.51 to 1.21, indicating the versatility of the method. The reextraction was achieved with the addition of 5% Na2SO4, allowing the partitioning of the protease to the upper phase, whereas total proteins were directed to the bottom phase. The results of partitioning using the PEG/NaPA/NaCl system and that of the subsequent reextraction with Na2SO4 suggest that this method can be used to purify proteases from fermented broth of P. fellutanum.


Enzyme Research | 2018

Optimization of Xylanase Production from Aspergillus foetidus in Soybean Residue

Luana Cunha; Raquel Martarello; Paula Monteiro de Souza; Marcela Medeiros de Freitas; Kleber Vanio Gomes Barros; Edivaldo Ximenes Ferreira Filho; Mauricio Homem-de-Mello; Pérola Oliveira Magalhães

Enzymatic hydrolysis is an important but expensive step in the process to obtain enzyme derived products. Thus, the production of efficient enzymes is of great interest for this biotechnological application. The production of xylanase by Aspergillus foetidus in soybean residues was optimized using 2 × 23 factorial designs. The experimental data was fitted into a polynomial model for xylanase activity. Statistical analyses of the results showed that variables pH and the interaction of pH and temperature had influenced the production of xylanase, with the best xylanase production level (13.98 U/mL) occurring at fermentation for 168 hours, pH 7.0, 28°C, and 120 rpm.


The Scientific World Journal | 2014

Cytotoxicity of Doxycycline Effluent Generated by the Fenton Process

Alexandre Augusto Borghi; Laura Oliveira-Nascimento; Marco Antonio Stephano; Paula Monteiro de Souza; Attilio Converti; Mauri Sergio Alves Palma

This study aims at determining the Minimum Inhibitory Concentration with Escherichia coli ATCC 25922 and cytotoxicity to L929 cells (ATCC CCL-1) of the waste generated by doxycycline degradation by the Fenton process. This process has shown promise in this treatment thanks mainly to the fact that the waste did not show any relevant inhibitory effect on the test organism and no cytotoxicity to L-929 cells, thus demonstrating that the antibiotic properties were inactivated.


Process Biochemistry | 2014

PEG/NaPA aqueous two-phase systems for the purification of proteases expressed by Penicillium restrictum from Brazilian Savanna

Kleber Vânio Gomes Barros; Paula Monteiro de Souza; Marcela Medeiros Freitas; Edivaldo Ximenes Ferreira Filho; Adalberto Pessoa Junior; Pérola Oliveira Magalhães

Collaboration


Dive into the Paula Monteiro de Souza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge