Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula Rodríguez-Escales is active.

Publication


Featured researches published by Paula Rodríguez-Escales.


Water Research | 2016

Fate of sulfamethoxazole in groundwater: Conceptualizing and modeling metabolite formation under different redox conditions

Paula Rodríguez-Escales; Xavier Sanchez-Vila

Degradation of emerging organic compounds in saturated porous media is usually postulated as following simple low-order models. This is a strongly oversimplified, and in some cases plainly incorrect model, that does not consider the fate of the different metabolites. Furthermore, it does not account for the reversibility in the reaction observed in a few emerging organic compounds, where the parent is recovered from the metabolite. One such compound is the antibiotic sulfamethoxazole (SMX). In this paper, we first compile existing experimental data to formulate a complete model for the degradation of SMX in aquifers subject to varying redox conditions, ranging from aerobic to iron reducing. SMX degrades reversibly or irreversibly to a number of metabolites that are specific of the redox state. Reactions are in all cases biologically mediated. We then propose a mathematical model that reproduces the full fate of dissolved SMX subject to anaerobic conditions and that can be used as a first step in emerging compound degradation modeling efforts. The model presented is tested against the results of the batch experiments of Barbieri etxa0al. (2012) and Nödler etxa0al. (2012) displaying a non-monotonic concentration of SMX as a function of time under denitrification conditions, as well as those of Mohatt etxa0al. (2011), under iron reducing conditions.


Journal of Contaminant Hydrology | 2014

Nitrate attenuation potential of hypersaline lake sediments in central Spain: flow-through and batch experiments.

R. Carrey; Paula Rodríguez-Escales; Neus Otero; C. Ayora; Albert Soler; Juan José Gómez-Alday

Complex lacustrine systems, such as hypersaline lakes located in endorheic basins, are exposed to nitrate (NO3(-)) pollution. An excellent example of these lakes is the hypersaline lake located in the Pétrola basin (central Spain), where the lake acts as a sink for NO3(-) from agricultural activities and from sewage from the surrounding area. To better understand the role of the organic carbon (Corg) deposited in the bottom sediment in promoting denitrification, a four-stage flow-through experiment (FTR) and batch experiments using lake bottom sediment were performed. The chemical, multi-isotopic and kinetic characterization of the outflow showed that the intrinsic NO3(-) attenuation potential of the lake bottom sediment was able to remove 95% of the NO3(-) input over 296days under different flow conditions. The NO3(-) attenuation was mainly linked with denitrification but some dissimilatory nitrate reduction to ammonium was observed at early days favored by the high C/N ratio and salinity. Sulfate reduction could be neither confirmed nor discarded during the experiments because the sediment leaching masked the chemical and isotopic signatures of this reaction. The average nitrogen reduction rate (NRR) obtained was 1.25mmold(-1)kg(-1) and was independent of the flow rate employed. The amount of reactive Corg from the bottom sediment consumed during denitrification was 28.8mmol, representing approximately 10% of the total Corg of the sediment (1.2%). Denitrification was produced coupled with an increase in the isotopic composition of both δ(15)N and δ(18)O. The isotopic fractionations (ε of (15)N-NO3(-) and (18)O-NO3(-)) produced during denitrification were calculated using batch and vertical profile samples. The results were -14.7‰ for εN and -14.5‰ for εO.


Water Air and Soil Pollution | 2013

Granulometry and surfactants, key factors in desorption and biodegradation (T.versicolor) of PAHs in soil and groundwater

Paula Rodríguez-Escales; Eduard Borràs; Montserrat Sarrà; Albert Folch

High hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) is the most limiting factor for the remediation of polluted soils and aquifers. The present study analyzes the effect of three nonionic surfactants (Tween 80, BS-400, and Gold Crew) and the granulometry of soil (1xa0%, 5xa0%, 10xa0%, and 20xa0% of clay and silt) on desorption of a PAH mixture (fluorene, phenanthrene, anthracene, and pyrene). As a general trend, decrease of fine material content and increase of surfactant concentration raises desorption. However, some particularities have to be considered depending on granulometry together with the surfactant applied. Furthermore, increase of fine material content tends to reduce the importance of the PAH properties, e.g., Kow and solubility, in desorption. To complete the remediation process, biodegradation by Trametes versicolor was tested with the surfactant Tween 80. Results indicate that a high concentration of surfactant does not affect the efficiency of fungus bioremediation. Nevertheless, high fine material content in soil/aquifer can reduce the degradation rate. Moreover, desorption and biodegradation used synergically guarantee better overall results in the remediation of soils polluted by PAH mixtures than other methods that separate desorption and remediation.


Water Air and Soil Pollution | 2012

Influence of Soil Granulometry on Pyrene Desorption in Groundwater Using Surfactants

Paula Rodríguez-Escales; Tahseen Sayara; Teresa Vicent; Albert Folch

The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) is the main limiting factor for the remediation of soils and aquifers. Surfactants are amphiphilic substances which encourage the transfer of hydrophobic compounds from the solid to the liquid phase. While the interaction between organic matter and surfactants has been widely studied, there is a lack of knowledge concerning the relationship between surfactant efficiency and the granulometry of soil and/or geologic material. In this paper, three non-ionic surfactants (Tween 80, Gold Crew, and BS-400) were used to study the desorption of pyrene, chosen as a representative PAH, in soils with different grain size proportions (1%, 5%, 10%, and 20% of clay and silt) and no organic matter (<0.1%). The best quantity of surfactant to apply is closely related to the proportion of fine materials. Tween 80 gave better maximum desorption than Gold Crew and BS-400 (89%, 40%, and 36%, respectively). As an important proportion of aquifers show fine material above 1%, the effective critical micellar concentration obtained when applying surfactants to this type of geologic materials has to be higher than 150xa0mgxa0L−1 for Tween 80, and higher than 65xa0mgxa0L−1, and 100xa0mgxa0L−1 for Golf Crew and BS 400, respectively. Furthermore, results indicate that carrying out simple laboratory tests before the use of surfactants on a field scale is necessary to improve the efficiency and minimize the financial and environmental impact of its application.


Water Resources Research | 2017

A KDE-based random walk method for modeling reactive transport with complex kinetics in porous media

Guillem Sole-Mari; Daniel Fernàndez-Garcia; Paula Rodríguez-Escales; Xavier Sanchez-Vila

This is the peer reviewed version of the following article: Sole-Mari, G., Fernandez-Garcia, D., Rodriguez-Escales, P., & Sanchez-Vila, X. (2017). A KDE-based random walk method for modeling reactive transport with complex kinetics in porous media. Water Resources Research, 53, 9019–9039, which has been published in final form at https://doi.org/10.1002/2017WR021064. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.In recent years a large body of literature has been devoted to study reactive transport of solutes in porous media based on pure Lagrangian formulations. Such approaches have also been extended to accommodate second-order bimolecular reactions, in which the reaction rate is proportional to the concentrations of the reactants. Rather, in some cases, chemical reactions involving two reactants follow more complicated rate laws. Some examples are (1) reaction rate laws written in terms of powers of concentrations, (2) redox reactions incorporating a limiting term (e.g. Michaelis-Menten), or (3) any reaction where the activity coefficients vary with the concentration of the reactants, just to name a few. We provide a methodology to account for complex kinetic bimolecular reactions in a fully Lagrangian framework where each particle represents a fraction of the total mass of a specific solute. The method, built as an extension to the second-order case, is based on the concept of optimal Kernel Density Estimator, which allows the concentrations to be written in terms of particle locations, hence transferring the concept of reaction rate to that of particle location distribution. By doing so, we can update the probability of particles reacting without the need to fully reconstruct the concentration maps. The performance and convergence of the method is tested for several illustrative examples that simulate the Advection-Dispersion-Reaction Equation in a 1D homogeneous column. Finally, a 2D application example is presented evaluating the need of fully describing non-bilinear chemical kinetics in a randomly heterogeneous porous medium.


Water Resources Research | 2017

Improving degradation of emerging organic compounds by applying chaotic advection in Managed Aquifer Recharge in randomly heterogeneous porous media

Paula Rodríguez-Escales; Daniel Fernàndez-Garcia; J. Drechsel; Albert Folch; Xavier Sanchez-Vila

Improving degradation rates of emerging organic compounds (EOCs) in groundwater is still a challenge. Although their degradation is not fully understood, it has been observed that some substances are preferably degraded under specific redox conditions. The coupling of Managed Aquifer Recharge with soil aquifer remediation treatment, by placing a reactive layer containing organic matter at the bottom of the infiltration pond, is a promising technology to improve the rate of degradation of EOCs. Its success is based on assuming that recharged water and groundwater get well mixed, which is not always true. It has been demonstrated that mixing can be enhanced by inducing chaotic advection through extraction-injection-engineering. In this work, we analyze how chaotic advection might enhance the spreading of redox conditions with the final aim of improving degradation of a mix of benzotriazoles: benzotriazole, 5-methyl-benzotriazole, and 5-chloro-benzotriazole. The degradation of the first two compounds was fastest under aerobic conditions whereas the third compound was best degraded under denitrification conditions. We developed a reactive transport model that describes how a recharged water rich in organic matter mixes with groundwater, how this organic matter is oxidized by different electron acceptors, and how the benzotriazoles are degraded attending for the redox state. The model was tested in different scenarios of recharge, both in homogenous and in heterogenous media. It was found that chaotic flow increases the spreading of the plume of recharged water. Consequently, different redox conditions coexist at a given time, facilitating the degradation of EOCs.


Journal of Contaminant Hydrology | 2017

Feasibility of two low-cost organic substrates for inducing denitrification in artificial recharge ponds: batch and flow-through experiments

Alba Grau-Martínez; Clara Torrentó; R. Carrey; Paula Rodríguez-Escales; Cristina Domènech; Giorgio Ghiglieri; Albert Soler; Neus Otero

Anaerobic batch and flow-through experiments were performed to assess the capacity of two organic substrates to promote denitrification of nitrate-contaminated groundwater within managed artificial recharge systems (MAR) in arid or semi-arid regions. Denitrification in MAR systems can be achieved through artificial recharge ponds coupled with a permeable reactive barrier in the form of a reactive organic layer. In arid or semi-arid regions, short-term efficient organic substrates are required due to the short recharge periods. We examined the effectiveness of two low-cost, easily available and easily handled organic substrates, commercial plant-based compost and crushed palm tree leaves, to determine the feasibility of using them in these systems. Chemical and multi-isotopic monitoring (δ15NNO3, δ18ONO3, δ34SSO4, δ18OSO4) of the laboratory experiments confirmed that both organic substrates induced denitrification. Complete nitrate removal was achieved in all the experiments with a slight transient nitrite accumulation. In the flow-through experiments, ammonium release was observed at the beginning of both experiments and lasted longer for the experiment with palm tree leaves. Isotopic characterisation of the released ammonium suggested ammonium leaching from both organic substrates at the beginning of the experiments and pointed to ammonium production by DNRA for the palm tree leaves experiment, which would only account for a maximum of 15% of the nitrate attenuation. Sulphate reduction was achieved in both column experiments. The amount of organic carbon consumed during denitrification and sulphate reduction was 0.8‰ of the total organic carbon present in commercial compost and 4.4% for the palm tree leaves. The N and O isotopic fractionation values obtained (εN and εO) were -10.4‰ and -9.0‰ for the commercial compost (combining data from both batch and column experiments), and -9.9‰ and -8.6‰ for the palm tree column, respectively. Both materials showed a satisfactory capacity for denitrification, but the palm tree leaves gave a higher denitrification rate and yield (amount of nitrate consumed per amount of available C) than commercial compost.


Journal of Environmental Management | 2018

Tracing the role of endogenous carbon in denitrification using wine industry by-product as an external electron donor: coupling isotopic tools with mathematical modeling

R. Carrey; Paula Rodríguez-Escales; Albert Soler; Neus Otero

Nitrate removal through enhanced biological denitrification (EBD), consisting of the inoculation of an external electron donor, is a feasible solution for the recovery of groundwater quality. In this context, liquid waste from wine industries (wine industry by-products, WIB) may be feasible for use as a reactant to enhance heterotrophic denitrification. To address the feasibility of WIB as electron donor to promote denitrification, as well as to evaluate the role of biomass as a secondary organic C source, a flow-through experiment was carried out. Chemical and isotopic characterization was performed and coupled with mathematical modeling. Complete nitrate attenuation with no nitrite accumulation was successfully achieved after 10 days. Four different C/N molar ratios (7.0, 2.0, 1.0 and 0) were tested. Progressive decrease of the C/N ratio reduced the remaining C in the outflow and favored biomass migration, producing significant changes in dispersivity in the reactor, which favored efficient nitrate degradation. The applied mathematical model described the general trends for nitrate, ethanol, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) concentrations. This model shows how the biomass present in the system is degraded to dissolved organic C (DOCen) and becomes the main source of DOC for a C/N ratio between 1.0 and 0. The isotopic model developed for organic and inorganic carbon also describes the general trends of δ13C of ethanol, DOC and DIC in the outflow water. The study of the evolution of the isotopic fractionation of organic C using a Rayleigh distillation model shows the shift in the organic carbon source from the WIB to the biomass and is in agreement with the isotopic fractionation values used to calibrate the model. Isotopic fractionations (ε) of C-ethanol and C-DOCen werexa0-1‰ andxa0-5‰ (model) andxa0-3.3‰ andxa0-4.8‰ (Rayleigh), respectively. In addition, an inverse isotopic fractionation ofxa0+10‰ was observed for biomass degradation to DOCen. Overall, WIB can efficiently promote nitrate reduction in EBD treatments. The conceptual model of the organic C cycle and the developed mathematical model accurately described the chemical and isotopic transformations that occur during this induced denitrification.


Chemical Geology | 2014

Integrated modeling of biogeochemical reactions and associated isotope fractionations at batch scale: A tool to monitor enhanced biodenitrification applications

Paula Rodríguez-Escales; Boris M. van Breukelen; Georgina Vidal-Gavilan; Albert Soler; Albert Folch


Journal of Hydrology | 2016

Modeling long term Enhanced in situ Biodenitrification and induced heterogeneity in column experiments under different feeding strategies

Paula Rodríguez-Escales; Albert Folch; Boris M. van Breukelen; Georgina Vidal-Gavilan; Xavier Sanchez-Vila

Collaboration


Dive into the Paula Rodríguez-Escales's collaboration.

Top Co-Authors

Avatar

Albert Folch

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Xavier Sanchez-Vila

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Albert Soler

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Daniel Fernàndez-Garcia

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neus Otero

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

R. Carrey

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Guillem Sole-Mari

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge