Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula S. Henthorn is active.

Publication


Featured researches published by Paula S. Henthorn.


Genomics | 1988

Regional assignment of the gene for human liver/bone/kidney alkaline phosphatase to chromosome 1p36.1-p34.

Moyra Smith; Mitchell J. Weiss; Constance A. Griffin; Jeffrey C. Murray; Kenneth H. Buetow; Beverly S. Emanuel; Paula S. Henthorn; Harry Harris

We have used three different methods to map the human liver/bone/kidney alkaline phosphatase (ALPL) locus: (1) Southern blot analysis of DNA derived from a panel of human-rodent somatic cell hybrids; (2) in situ hybridization to human chromosomes; and (3) genetic linkage analysis. Our results indicate that the ALPL locus maps to human chromosome bands 1p36.1-p34 and is genetically linked to the Rh (maximum lod score of 15.66 at a recombination value of 0.10) and fucosidase A (maximum lod score of 8.24 at a recombination value of 0.02) loci. These results, combined with restriction fragment length polymorphisms identified by ALPL DNA probes, provide a useful marker for gene mapping studies involving the short arm of chromosome 1. In addition, our results help to elucidate further the structure and evolution of the human alkaline phosphatase multigene enzyme family.


Mammalian Genome | 1999

ANCHORING OF CANINE LINKAGE GROUPS WITH CHROMOSOME-SPECIFIC MARKERS

Petra Werner; Cathryn S. Mellersh; Michael G. Raducha; Susan DeRose; Gregory M. Acland; Ulana Prociuk; Neil Wiegand; Gustavo D. Aguirre; Paula S. Henthorn; Donald F. Patterson; Elaine A. Ostrander

Abstract. A high-resolution genetic map with polymorphic markers spaced frequently throughout the genome is a key resource for identifying genes that control specific traits or diseases. The lack of rigorous selection against genetic disorders has resulted in many breeds of dog suffering from a very high frequency of genetic diseases, which tend to be breed-specific and usually inherited as autosomal recessive or apparently complex genetic traits. Many of these closely resemble human genetic disorders in their clinical and pathologic features and are likely to be caused by mutations in homologous genes. To identify loci important in canine disease genes, as well as traits associated with morphological and behavioral variation, we are developing a genetic map of the canine genome. Here we report on an updated version of the canine linkage map, which includes 341 mapped markers distributed over the X and 37 autosomal linkage groups. The average distance between markers on the map is 9.0 cM, and the linkage groups provide estimated coverage of over 95% of the genome. Fourteen linkage groups contain either gene-associated or anonymous markers localized to cosmids that have been assigned to specific canine chromosomes by FISH. These 14 linkage groups contain 150 microsatellite markers and allow us to assign 40% of the linkage groups to specific canine chromosomes. This new version of the map is of sufficient density and characterization to initiate mapping of traits of interest.


American Journal of Medical Genetics | 1999

Mild autosomal dominant hypophosphatasia: In utero presentation in two families

Cynthia A. Moore; Cynthia J. Curry; Paula S. Henthorn; John A. Smith; J. Charles Smith; Patricia O'Lague; Stephen P. Coburn; David D. Weaver; Michael P. Whyte

We describe four pregnancies in two families in which mild hypophosphatasia, apparently transmitted as an autosomal dominant trait, manifested in utero as severe long bone bowing. Postnatally, there was spontaneous improvement of the skeletal defects. Recognition of this presentation for hypophosphatasia by family investigation and assessment of the fetal skeleton for degree of ossification and chest size using ultrasonography is important. The prognosis for this condition is considerably better than for more severe forms of hypophosphatasia and for many other disorders that cause skeletal defects with long bone bowing in utero.


Journal of Virology | 2006

Severe Papillomavirus Infection Progressing to Metastatic Squamous Cell Carcinoma in Bone Marrow-Transplanted X-Linked SCID Dogs

Michael H. Goldschmidt; Jeffrey S. Kennedy; Douglas R. Kennedy; Hang Yuan; David E. Holt; Margret L. Casal; Anne Traas; Elizabeth A. Mauldin; Peter F. Moore; Paula S. Henthorn; Brian J. Hartnett; Kenneth I. Weinberg; Richard Schlegel; Peter J. Felsburg

ABSTRACT Canine X-linked severe combined immunodeficiency (XSCID) is due to mutations in the common gamma chain (γc) gene and is identical clinically and immunologically to human XSCID, making it a true homologue of the human disease. Bone marrow-transplanted (BMT) XSCID dogs not only engraft donor T cells and reconstitute normal T-cell function but, in contrast to the majority of transplanted human XSCID patients, also engraft donor B cells and reconstitute normal humoral immune function. Shortly after our initial report of successful BMT of XSCID dogs, it soon became evident that transplanted XSCID dogs developed late-onset severe chronic cutaneous infections containing a newly described canine papillomavirus. This is analogous to the late-onset cutaneous papillomavirus infection recently described for human XSCID patients following BMT. Of 24 transplanted XSCID dogs followed for at least 1 year post-BMT, 71% developed chronic canine papillomavirus infection. Six of the transplanted dogs that developed cutaneous papillomas were maintained for >3 1/2 years post-BMT for use as breeders. Four of these six dogs (67%) developed invasive squamous cell carcinoma (SCC), with three of the dogs (75%) eventually developing metastatic SCC, an extremely rare consequence of SCC in the dog. This finding raises the question of whether SCC will develop in transplanted human XSCID patients later in life. Canine XSCID therefore provides an ideal animal model with which to study the role of the γc-dependent signaling pathway in the response to papillomavirus infections and the progression of these viral infections to metastatic SCC.


Human Genetics | 2000

Canine cystinuria: polymorphism in the canine SLC3A1 gene and identification of a nonsense mutation in cystinuric Newfoundland dogs

Paula S. Henthorn; Junlong Liu; Tanya Gidalevich; Jikang Fang; Margret L. Casal; Donald F. Patterson; Urs Giger

Abstract. Cystinuria is an inherited renal and intestinal disease characterized by defective amino acid reabsorption and cystine urolithiasis. Different forms of the disease, designated type I and non-type I in cystinuric humans, can be distinguished clinically and biochemically, and have been associated with mutations in the SLC3A1 (rBAT) and SLC7A9 genes, respectively. Type I cystinuria is the most common form and is inherited as an autosomal recessive trait in humans. Cystinuria has been recognized in more than 60 breeds of dogs and a severe form, resembling type I cystinuria, has been characterized in the Newfoundland breed. Here we report the cloning and sequencing of the canine SLC3A1 cDNA and gene, and the identification of a nonsense mutation in exon 2 of the gene in cystinuric Newfoundland dogs. A mutation-specific test was developed for the diagnosis and control of cystinuria in Newfoundland dogs. In cystinuric dogs of six other breeds, either heterozygosity at the SLC3A1 locus or lack of mutations in the coding region of the SLC3A1 gene were observed, indicating that cystinuria is genetically heterogeneous in dogs, as it is in humans. The canine homologue of human type I cystinuria provides the opportunity to use a large animal model to investigate molecular approaches for the treatment of cystinuria and other renal tubular diseases.


Mammalian Genome | 2005

Mutation identification in a canine model of X-linked ectodermal dysplasia

Margret L. Casal; Jennifer L. Scheidt; James L. Rhodes; Paula S. Henthorn; Petra Werner

X-linked hypohidrotic ectodermal dysplasia (XHED), an inherited disease recognized in humans, mice, and cattle, is characterized by hypotrichosis, a reduced number or absence of sweat glands, and missing or malformed teeth. In a subset of affected individuals and animals, mutations in the EDA gene (formerly EDI), coding for ectodysplasin, have been found to cause this phenotype. Ectodysplasin is a homotrimeric transmembrane protein with an extracellular TNF-like domain, which has been shown to be involved in the morphogenesis of hair follicles and tooth buds during fetal development. Some human XHED patients also have concurrent immunodeficiency, due to mutations in the NF-κB essential modulator protein (IKBKG; formerly NEMO), which is also encoded on the X chromosome. In a breeding colony of dogs with XHED, immune system defects had been suspected because of frequent pulmonary infections and unexpected deaths resulting from pneumonia. To determine if defects in EDA or IKBKG cause XHED in the dogs, linkage analysis and sequencing experiments were performed. A polymorphic marker near the canine EDA gene showed significant linkage to XHED. The canine EDA gene was sequenced and a nucleotide substitution (G to A) in the splice acceptor site of intron 8 was detected in affected dogs. In the presence of the A residue, a cryptic acceptor site within exon 9 is used, leading to a frame shift and use of a premature stop codon that truncates the translation of both isoforms, EDA-A1 and EDA-A2, resulting in the absence of the TNF-like homology domain, the receptor-binding site of ectodysplasin.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Drug selection with paclitaxel restores expression of linked IL-2 receptor γ-chain and multidrug resistance (MDR1) transgenes in canine bone marrow

Thomas Licht; Mark E. Haskins; Paula S. Henthorn; Sandra E. Kleiman; David M. Bodine; Todd Whitwam; Jennifer M. Puck; Michael M. Gottesman; John R. Melniczek

Unstable expression of transferred genes is a major obstacle to successful gene therapy of hematopoietic diseases. We have investigated in a canine large-animal model whether expression of transduced genes can be recovered in vivo. Mixed-breed dogs had undergone autologous bone marrow transplantation (BMT) with stem cell factor and granulocyte–colony-stimulating factor-mobilized retrovirally marked hematopoietic cells. The bicistronic retroviral vector construct allowed for coexpression of MDR1 and human IL-2 receptor common γ-chain cDNAs. The latter gene is deficient in X-linked severe combined immunodeficiency. After initial high-level expression, P-glycoprotein and the γ-chain were undetectable in blood and bone marrow 17 months post-BMT. Six months later, one dog was treated i.v. with 125 mg/m2 paclitaxel. Three administrations restored expression of the two linked genes to high levels in blood and bone marrow. Two dogs treated with higher paclitaxel doses died from myelosuppression after the first administration. As determined by flow cytometry, both genes were expressed in granulocytes, monocytes, and lymphocytes of the surviving animal. PCR analysis of DNA from peripheral blood confirmed that the retroviral cDNA was increased after paclitaxel treatment, suggesting enrichment of transduced cells. P-glycoprotein was detectable for more than 1 year after cessation of paclitaxel. Repeated analyses of blood and bone marrow aspirates gave no indication of hematopoietic disturbance after BMT with transduced cells and paclitaxel treatment. In summary, we have shown that with the use of a drug-selectable marker gene, chemotherapy can select for cells that express an otherwise nonselected therapeutic gene in blood and bone marrow.


Journal of Biological Chemistry | 1996

Molecular Basis of Canine Muscle Type Phosphofructokinase Deficiency

B. F. Smith; Hansell H. Stedman; Yashoda Rajpurohit; Paula S. Henthorn; John H. Wolfe; Donald F. Patterson; Urs Giger

Muscle type phosphofructokinase (M-PFK) deficiency is a rare inherited glycogen storage disease in humans that causes exertional myopathy and hemolysis. The molecular basis of canine M-PFK deficiency, the only naturally occurring animal homologue, was investigated. Lack of M-PFK enzyme activity was caused by a nonsense mutation in the penultimate exon of the M-PFK gene, leading to rapid degradation of a truncated (40 amino acids) and therefore unstable M-PFK protein. A polymerase chain reaction-based test was devised to identify M-PFK-deficient and carrier animals. This represents one of only a few inborn errors of metabolism where the molecular defect has been identified in a large animal model which can now be used to develop and assess novel therapeutic strategies.


Mammalian Genome | 2003

Canine Imerslund-Grasbeck syndrome maps to a region orthologous to HSA14q

Qianchuan He; John C. Fyfe; Alejandro A. Schäffer; Adam Kilkenney; Petra Werner; Ewen F. Kirkness; Paula S. Henthorn

Selective malabsorption of cobalamin (vitamin B12) accompanied by proteinuria, known as Imerslund-Gräsbeck syndrome or megaloblastic anemia 1 (I-GS, MGA1; OMIM 261100), is a rare autosomal recessive disorder. In Finnish kindreds, I-GS is caused by mutations in the cubilin gene (CUBN), located on human Chromosome (Chr) 10. However, not all patients have CUBN mutations, and three distinct mutations in the amnionless gene, AMN, were very recently identified in patients from Norwegian and Israeli families. The present study demonstrates that in a large canine I-GS pedigree, the disease is genetically linked (peak multipoint LOD score 11.74) to a region on dog Chr 8 that exhibits conserved synteny with human Chr 14q. Multipoint analysis indicates that the canine disease gene lies in an interval between the echinoderm microtubule-associated, protein-like 1 (EML1) gene and the telomere. A single critical recombinant further suggests that the disease gene is between markers in EML1 and the G protein-coupled receptor (G2A) gene, defining an I-GS interval in the human genome that contains the AMN gene. Thus, these comparative-mapping data provide evidence that canine I-GS is a homologue of one form of the human disease and will provide a useful system for understanding the molecular mechanisms underlying the disease in humans.


Veterinary Immunology and Immunopathology | 1995

A single nucleotide insertion in the canine interleukin-2 receptor gamma chain results in X-linked severe combined immunodeficiency disease

Richard L. Somberg; Robin P. Pullen; Margret L. Casal; Donald F. Patterson; Peter J. Felsburg; Paula S. Henthorn

The immunologic and genetic analysis of a 14-week-old-male cardigan Welsh corgi puppy that presented with failure to thrive, diarrhea, and intermittent vomiting are described. The lack of palpable lymph nodes, the premature death of a male sibling, and similar clinical signs in a male cousin suggested that a primary immunodeficiency disease might be responsible for his poor clinical condition. Quantitation of serum immunoglobulins revealed low concentrations of IgG and undetectable IgA, yet normal concentrations of IgM. A complete blood cell count showed a slight anemia and lymphopenia. Although the peripheral blood contained a normal percentage of T cells, with an increased CD4:CD8 ratio, they were unable to proliferate in response to phytohemagglutinin (PHA) and/or interleukin 2 (IL-2). Furthermore, following PHA activation, the peripheral blood lymphocytes (PBL) demonstrated a nearly complete lack of IL-2 binding. All of these laboratory findings were identical with our previous findings from dogs with X-linked severe combined immunodeficiency (XSCID) that is due to a mutation in their IL-2 receptor gamma (IL-2R gamma) chain. Examination of the corgis IL-2R gamma cDNA revealed an insertion of a cytosine following nucleotide 582, resulting in a premature stop codon prior to the transmembrane domain. The insertion also created an EcoO109 restriction enzyme site that enabled us to detect the mutation in the patients genomic DNA. This new mutation in the IL-2R gamma chain discovered in a cardigan Welsh corgi puppy results in XSCID with similar immunologic abnormalities as observed in dogs with the same disease resulting from a different IL-2R gamma chain mutation.

Collaboration


Dive into the Paula S. Henthorn's collaboration.

Top Co-Authors

Avatar

Peter J. Felsburg

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian J. Hartnett

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Mark E. Haskins

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Margret L. Casal

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Petra Werner

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Peter F. Moore

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry Harris

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge