Paula Tejera
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paula Tejera.
Thorax | 2009
Rihong Zhai; Chau-Chyun Sheu; L. Su; Michelle N. Gong; Paula Tejera; Feng Chen; Zhaoxi Wang; M P Convery; B T Thompson; David C. Christiani
Background: Hyperbilirubinaemia is a common complication of sepsis. Elevated bilirubin may induce inflammation and apoptosis. It was hypothesised that increased serum bilirubin on Intensive Care Unit (ICU) admission contributes to sepsis-related acute respiratory distress syndrome (ARDS). Methods: Serum bilirubin on ICU admission was measured in 1006 patients with sepsis. Serial serum bilirubin was analysed prospectively in patients with sepsis who had ARDS for a period of 28 days. The effects of clinical factors and variants of the UGT1A1 gene on serum bilirubin levels were determined. Outcomes were ARDS risk and mortality. Results: During 60-day follow-up, 326 patients with sepsis developed ARDS, of whom 144 died from ARDS. The hyperbilirubinaemia (⩾2.0 mg/dl) rate in patients with ARDS (22.4%) was higher than in those without ARDS (14.1%, p = 0.002). For each 1.0 mg/dl increase in admission bilirubin, ARDS risk and 28- and 60-day ARDS mortalities were increased by 7% (OR = 1.07; p = 0.003), 20% (OR = 1.20; p = 0.002) and 18% (OR = 1.18; p = 0.004), respectively. Compared with subjects with bilirubin levels <2.0 mg/dl, patients with hyperbilirubinaemia had higher risks of ARDS (OR = 2.12; p = 0.0007) and 28-day (OR = 2.24; p = 0.020) and 60-day ARDS mortalities (OR = 2.09; p = 0.020). In sepsis-related ARDS, serial bilirubin levels in non-survivors were consistently higher than in survivors (p<0.0001). Clinical variables explained 29.5% of the interindividual variation in bilirubin levels, whereas genetic variants of UGT1A1 contributed 7.5%. Conclusion: In sepsis, a higher serum bilirubin level on ICU admission is associated with subsequent ARDS development and mortality.
American Journal of Respiratory and Critical Care Medicine | 2013
Nuala J. Meyer; Rui Feng; Mingyao Li; Yang Zhao; Chau-Chyun Sheu; Paula Tejera; Robert Gallop; Scarlett L. Bellamy; Melanie Rushefski; Paul N. Lanken; Richard Aplenc; Grant E. O'Keefe; Mark M. Wurfel; David C. Christiani; Jason D. Christie
RATIONALE Acute respiratory distress syndrome (ARDS) behaves as a complex genetic trait, yet knowledge of genetic susceptibility factors remains incomplete. OBJECTIVES To identify genetic risk variants for ARDS using large scale genotyping. METHODS A multistage genetic association study was conducted of three critically ill populations phenotyped for ARDS. Stage I, a trauma cohort study (n = 224), was genotyped with a 50K gene-centric single-nucleotide polymorphism (SNP) array. We tested SNPs associated with ARDS at P < 5 × 10(-4) for replication in stage II, a trauma case-control population (n = 778). SNPs replicating their association in stage II (P < 0.005) were tested in a stage III nested case-control population of mixed subjects in the intensive care unit (n = 2,063). Logistic regression was used to adjust for potential clinical confounders. We performed ELISA to test for an association between ARDS-associated genotype and plasma protein levels. MEASUREMENTS AND MAIN RESULTS A total of 12 SNPs met the stage I threshold for an association with ARDS. rs315952 in the IL1RN gene encoding IL-1 receptor antagonist (IL1RA) replicated its association with reduced ARDS risk in stages II (P < 0.004) and III (P < 0.02), and was robust to clinical adjustment (combined odds ratio = 0.81; P = 4.2 × 10(-5)). Plasma IL1RA level was associated with rs315952C in a subset of critically ill subjects. The effect of rs315952 was independent from the tandem repeat variant in IL1RN. CONCLUSIONS The IL1RN SNP rs315952C is associated with decreased risk of ARDS in three populations with heterogeneous ARDS risk factors, and with increased plasma IL1RA response. IL1RA may attenuate ARDS risk.
PLOS ONE | 2012
D. Shane O'Mahony; Bradford J. Glavan; Tarah D. Holden; Christie Fong; R. Anthony Black; Gail Rona; Paula Tejera; David C. Christiani; Mark M. Wurfel
Introduction Common variants in genes related to inflammation, innate immunity, epithelial cell function, and angiogenesis have been reported to be associated with risks for Acute Lung Injury (ALI) and related outcomes. We tested whether previously-reported associations can be validated in an independent cohort at risk for ALI. Methods We identified 37 genetic variants in 27 genes previously associated with ALI and related outcomes. We prepared allelic discrimination assays for 12 SNPs from 11 genes with MAF>0.05 and genotyped these SNPs in Caucasian subjects from a cohort of critically ill patients meeting criteria for the systemic inflammatory response syndrome (SIRS) followed for development of ALI, duration of mechanical ventilation, and in-hospital death. We tested for associations using additive and recessive genetic models. Results Among Caucasian subjects with SIRS (n = 750), we identified a nominal association between rs2069832 in IL6 and ALI susceptibility (ORadj 1.61; 95% confidence interval [CI], 1.04–2.48, P = 0.03). In a sensitivity analysis limiting ALI cases to those who qualified for the Acute Respiratory Distress Syndrome (ARDS), rs61330082 in NAMPT was nominally associated with risk for ARDS. In terms of ALI outcomes, SNPs in MBL2 (rs1800450) and IL8 (rs4073) were nominally associated with fewer ventilator-free days (VFDs), and SNPs in NFE2L2 (rs6721961) and NAMPT (rs61330082) were nominally associated with 28-day mortality. The directions of effect for these nominal associations were in the same direction as previously reported but none of the associations survived correction for multiple hypothesis testing. Conclusion Although our primary analyses failed to statistically validate prior associations, our results provide some support for associations between SNPs in IL6 and NAMPT and risk for development of lung injury and for SNPs in IL8, MBL2, NFE2L2 and NAMPT with severity in ALI outcomes. These associations provide further evidence that genetic factors in genes related to immunity and inflammation contribute to ALI pathogenesis.
American Journal of Respiratory Cell and Molecular Biology | 2009
Paula Tejera; Zhaoxi Wang; Rihong Zhai; Li Su; Chau-Chyun Sheu; Deanne M. Taylor; Feng Chen; Michelle N. Gong; B. Taylor Thompson; David C. Christiani
Peptidase inhibitor 3 (PI3, elafin) is a protease inhibitor produced locally in the lung, where it plays a central role in controlling excessive activity of neutrophil elastase. Our previous study revealed that PI3 gene expression is down-regulated during the acute stage of acute respiratory distress syndrome (ARDS). We conducted a case-control study to investigate whether genetic variants in PI3 gene are associated with ARDS development. Based on resequencing data from 29 unrelated white subjects, three tagging single-nucleotide polymorphisms were selected and genotyped in a prospective cohort consisting of 449 white patients with ARDS (cases) and 1,031 critically ill patients (at-risk control subjects). We found that the variant allele of rs2664581 (T34P) was significantly associated with increased ARDS risk (odds ratio [OR], 1.35; 95% confidence interval [CI], 1.09-1.67; P = 0.006; false discovery rate adjusted P = 0.018). Moreover, this association was stronger among subjects with extrapulmonary injury. The common haplotype Hap2 (TTC), containing the variant allele of rs2664581, was also identified as a risk haplotype for ARDS (OR, 1.31; 95% CI, 1.05-1.64; P = 0.015). Furthermore, the rs2664581 polymorphism was associated with circulating PI3 levels in multivariate analyses. Patients with ARDS homozygous for the wild-type A allele of rs2664581 showed significant lower PI3 plasma level (P = 0.019) at ARDS onset as compared with those homozygous or heterozygous for the variant C allele. Our data suggest that polymorphisms in PI3 gene are significantly associated with ARDS risk and with circulating PI3 levels.
American Journal of Respiratory and Critical Care Medicine | 2015
Francesca Polverino; Borja G. Cosío; Jaime Pons; Maria E. Laucho-Contreras; Paula Tejera; Amanda Iglesias; Angel Rios; Andreas Jahn; Jaume Sauleda; Miguel Divo; Victor Pinto-Plata; Lynette M. Sholl; Ivan O. Rosas; Alvar Agusti; Bartolome R. Celli; Caroline A. Owen
RATIONALE Patients with chronic obstructive pulmonary disease (COPD) have increased pulmonary lymphoid follicle (LF) counts. B cell-activating factor of tumor necrosis factor family (BAFF) regulates B cells in health, but its role in COPD pathogenesis is unclear. OBJECTIVES To determine whether BAFF expression in pulmonary LFs correlates with COPD severity, LF size or number, and/or readouts of B-cell function in LFs. METHODS We correlated BAFF immunostaining in LFs in lung explants or biopsies from nonsmoking control subjects (NSC), smokers without COPD (SC), and patients with COPD with the number and size of LFs, and LF B-cell apoptosis, activation, and proliferation. We analyzed serum BAFF levels and BAFF expression in B cells in blood and bronchoalveolar lavage samples from the same subject groups. We assessed whether: (1) cigarette smoke extract (CSE) increases B-cell BAFF expression and (2) recombinant BAFF (rBAFF) rescues B cells from CSE-induced apoptosis by inhibiting activation of nuclear factor-κB (NF-κB). MEASUREMENTS AND MAIN RESULTS Patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage IV COPD had increased numbers and larger pulmonary LFs than patients with GOLD stages I-II COPD and SC. We identified two main types of pulmonary LFs: (1) type A, the predominant type in GOLD stages I-II COPD and SC, characterized by abundant apoptotic but few BAFF-positive cells (mostly B cells); and (2) type B, the main type in GOLD stage IV COPD, characterized by abundant BAFF-positive cells but few apoptotic cells (mostly B cells). BAFF levels were also higher in blood and bronchoalveolar lavage B cells in patients with COPD versus NSC and SC. Surprisingly, rBAFF blocked CSE-induced B-cell apoptosis by inhibiting CSE-induced NF-κB activation. CONCLUSIONS Our data support the hypothesis that B-cell BAFF expression creates a self-perpetuating loop contributing to COPD progression by promoting pulmonary B-cell survival and LF expansion.
Journal of Medical Genetics | 2012
Paula Tejera; Nuala J. Meyer; Feng Chen; Rui Feng; Yang Zhao; D. Shane O'Mahony; Lin Li; Chau-Chyun Sheu; Rihong Zhai; Zhaoxi Wang; Li Su; Ek Bajwa; Amy M. Ahasic; Peter Clardy; Michelle N. Gong; Angela J. Frank; Paul N. Lanken; B. Taylor Thompson; Jason D. Christie; Mark M. Wurfel; Grant E. O'Keefe; David C. Christiani
Background The role of genetics in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) from direct or indirect lung injury has not been specifically investigated. The aim of this study was to identify genetic variants contributing to ALI/ARDS from pulmonary or extrapulmonary causes. Methods We conducted a multistage genetic association study. We first performed a large-scale genotyping (50K ITMAT-Broad_CARe Chip) in 1717 critically ill Caucasian patients with either pulmonary or extrapulmonary injury, to identify single nucleotide polymorphisms (SNPs) associated with the development of ARDS from direct or indirect insults to the lung. Identified SNPs (p≤0.0005) were validated in two separated populations (Stage II), with trauma (Population I; n=765) and pneumonia/pulmonary sepsis (Population II; n=838), as causes for ALI/ARDS. Genetic variants replicating their association with trauma related-ALI in Stage II were validated in a second trauma-associated ALI population (n=224, Stage III). Results In Stage I, non-overlapping SNPs were significantly associated with ARDS from direct/indirect lung injury, respectively. The association between rs1190286 (POPDC3) and reduced risk of ARDS from pulmonary injury was validated in Stage II (p<0.003). SNP rs324420 (FAAH) was consistently associated with increased risk of ARDS from extrapulmonary causes in two independent ALI-trauma populations (p<0.006, Stage II; p<0.05, Stage III). Meta-analysis confirmed these associations. Conclusions Different genetic variants may influence ARDS susceptibility depending on direct versus indirect insults. Functional SNPs in POPDC3 and FAAH genes may be driving the association with direct and indirect ALI/ARDS, respectively.
Fems Yeast Research | 2003
Francisco J. Navarro; Germán Perdomo; Paula Tejera; Braulio Medina; Félix Machín; Rosa Ma Guillén; Ana Lancha; José M. Siverio
The role of nitrate reductase (NR) in the regulation of the nitrate assimilation pathway was evaluated in the yeast Hansenula polymorpha. Posttranscriptional regulation of NR in response to reduced nitrogen sources and the effect of a heterologous NR on the transcriptional regulation of nitrate-assimilatory gene expression was examined. The strain bearing YNR1 (nitrate reductase gene) under the control of the methanol-induced MOX (methanol oxidase) promoter showed that NR is active in the presence of reduced nitrogen sources. In cells incubated with glutamine plus nitrate, rapamycin abolished nitrogen catabolite repression, NR activity being very similar to that in cells induced by nitrate alone. This reveals the involvement of the Tor-signalling pathway in the transcriptional regulation of H. polymorpha nitrate assimilation genes. To assess the role of NR in nitrate-assimilatory gene expression, different strains lacking YNR1, or both YNR1 and YNT1 (high-affinity nitrate transporter) genes, or expressing the tobacco NR under the YNR1 promoter, were used. Tobacco NR abolished the constitutive nitrate-assimilatory gene induction shown by an NR gene disruptant strain. Moreover, in strains lacking the high-affinity nitrate transporter and NR this deregulation disappeared. These facts discard the role of NR protein in the transcriptional induction of the nitrate-assimilatory genes and point out the involvement of the high-affinity nitrate transporter as a part of the nitrate-signalling pathway.
Yeast | 2004
Félix Machín; Braulio Medina; Francisco J. Navarro; M. Dolores Pérez; Marten Veenhuis; Paula Tejera; Helena Lorenzo; Ana Lancha; José M. Siverio
Ynt1 is the only high‐affinity nitrate uptake system in Hansenula polymorpha. Nitrate uptake was directly correlated with the Ynt1 levels and shown to be independent of nitrate reductase (NR) activity levels. Ynt1 failed to transport chlorate and, as a result, strains lacking YNT1 were sensitive to chlorate, as is the wild‐type. Nitrite uptake in a wild‐type strain was partially inhibited by nitrate to levels shown by a YNT1‐disrupted strain in which, in turn, nitrite transport was not inhibited by nitrate. It is concluded that nitrite uptake takes place by two different transport systems: Ynt1 and a nitrite‐specific transporter(s). The nitrite‐specific transport system was induced by nitrate; consistently, no induction was observed in strains lacking the transcription factor YNA1, which is involved in nitrate and nitrite induction of the nitrate assimilatory structural genes. Ynt1 presents its optimal rate for nitrite uptake at pH 6, while pH 4 was optimal for the specific nitrite uptake system(s). At pH 5.5, the contribution of Ynt1 to high‐affinity nitrate and nitrite uptake was around 95% and 60%, respectively. The apparent Km of Ynt1 for nitrate and nitrite is in the µM range, as is the specific nitrite uptake system for nitrite. The analysis of the effect of the reduced nitrogen sources on nitrate assimilation revealed that glutamine inactivates nitrate and nitrite transport, dependent on Ynt1, but not the nitrite‐specific system. Copyright
Yeast | 1999
Celedonio González; Germán Perdomo; Paula Tejera; Nélida Brito; José M. Siverio
Previous evidence based on the experience of our laboratory showed that one‐step gene disruption in the yeast Hansenula polymorpha is not straightforward. A systematic study of several factors which could affect gene disruption frequency was carried out. We found that the more critical factor affecting one‐step gene disruption in H. polymorpha is the length of the target gene region flanking the marker gene. Target gene regions of about 1 kb flanking the marker gene were necessary to obtain a disruption frequency of about 50%. However, the gene marker, either homologous or heterologous, the locus and the strain examined did not significantly affect the frequency of disruption; the highest disruption frequency obtained for the YNR1 gene was in the strain HMI39, using the Saccharomyces cerevisiae URA3 gene as a marker. Since long regions flanking the gene marker do not allow the easy PCR‐mediated strategies, developed for S. cerevisiae, to obtain constructs to disrupt a given gene in H. polymorpha, an alternative PCR strategy was developed. Copyright
Chest | 2015
Yongyue Wei; Zhaoxi Wang; Li Su; Feng Chen; Paula Tejera; Ednan K. Bajwa; Mark M. Wurfel; Xihong Lin; David C. Christiani
BACKGROUND Platelets are believed to be critical in pulmonary-origin ARDS as mediators of endothelial damage through their interactions with fibrinogen and multiple signal transduction pathways. A prior meta-analysis identified five loci for platelet count (PLT): BAD, LRRC16A, CD36, JMJD1C, and SLMO2. This study aims to validate the quantitative trait loci (QTLs) of PLT within BAD, LRRC16A, CD36, JMJD1C, and SLMO2 among critically ill patients and to investigate the associations of these QTLs with ARDS risk that may be mediated through PLT. METHODS ARDS cases and at-risk control subjects were recruited from the intensive care unit of the Massachusetts General Hospital. Exome-wide genotyping data of 629 ARDS cases and 1,026 at-risk control subjects and genome-wide gene expression profiles of 18 at-risk control subjects were generated for analysis. RESULTS Single-nucleotide polymorphism (SNP) rs7766874 within LRRC16A was a significant locus for PLT among at-risk control subjects (β = -13.00; 95% CI, -23.22 to -2.77; P = .013). This association was validated using LRRC16A gene expression data from at-risk control subjects (β = 77.03 per 1 SD increase of log2-transformed expression; 95% CI, 27.26-126.80; P = .005). Further, rs7766874 was associated with ARDS risk conditioned on PLT (OR = 0.68; 95% CI, 0.51-0.90; P = .007), interacting with PLT (OR = 1.15 per effect allele per 100 × 103/μL of PLT; 95% CI, 1.03-1.30; P = .015), and mediated through PLT (indirect OR = 1.045; 95% CI, 1.007-1.085; P = .021). CONCLUSIONS Our findings support the role of LRRC16A in platelet formation and suggest the importance of LRRC16A in ARDS pathophysiology by interacting with, and being mediated through, platelets.