Paula Y. Arnold
St. Jude Children's Research Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paula Y. Arnold.
Immunity | 2009
Greig P. Lennon; Maria Bettini; Amanda R. Burton; Erica Vincent; Paula Y. Arnold; Pere Santamaria; Dario A. A. Vignali
Type 1 diabetes is a T cell-mediated autoimmune disease, characterized by lymphocytic infiltration of the pancreatic islets. It is currently thought that islet antigen specificity is not a requirement for islet entry and that diabetogenic T cells can recruit a heterogeneous bystander T cell population. We tested this assumption directly by generating T cell receptor (TCR) retrogenic mice expressing two different T cell populations. By combining diabetogenic and nondiabetogenic or nonautoantigen-specific T cells, we demonstrate that bystander T cells cannot accumulate in the pancreatic islets. Autoantigen-specific T cells that accumulate in islets, but do not cause diabetes, were also unaffected by the presence of diabetogenic T cells. Additionally, 67% of TCRs cloned from nonobese diabetic (NOD) islet-infiltrating CD4(+) T cells were able to mediate cell-autonomous islet infiltration and/or diabetes when expressed in retrogenic mice. Therefore, islet entry and accumulation appears to be a cell-autonomous and tightly regulated event and is governed by islet antigen specificity.
Journal of Immunology | 2002
Paula Y. Arnold; Nicole L. La Gruta; Timothy B. Miller; Kate M. Vignali; David L. Woodland; Dario A. A. Vignali
Peptides bind to MHC class II molecules with a defined periodicity such that the peptide-flanking residues (PFRs) P-1 and P11, which lie outside the core binding sequence (P1–P9), are solvent exposed and accessible to the TCR. Using a novel MHC class II:peptide binding assay, we defined the binding register for nine immunogenic epitopes to formally identify the flanking residues. Seven of the nine epitopes, restricted by H-2Ak, H-2Ag7, or H-2Ek, were found to generate T cells that were completely dependent on either P-1 or P11, with dependency on P-1 favored over P11. Such PFR dependency appears to be influenced by the type of amino acid exposed, in that residues that can form salt bridges or hydrogen bonds are favored over small or hydrophobic residues. Peptides containing alanine substitutions at P-1 or P11 in place of PFRs that mediate dependency were considerably less immunogenic and mediated a substantially reduced in vitro recall response to the native protein, inferring that PFR recognition increases immunogenicity. Our data suggest that PFR recognition is a common event characteristic of all MHC class II-restricted T cell responses. This key feature, which is not shared by MHC class I-restricted responses, may underlie the broad functional diversity displayed by MHC class II-restricted T cells.
Diabetes | 2008
Amanda R. Burton; Erica Vincent; Paula Y. Arnold; Greig P. Lennon; Matthew P. Smeltzer; Chin Shang Li; Kathryn Haskins; John C. Hutton; Roland Tisch; Eli E. Sercarz; Pere Santamaria; Creg J. Workman; Dario A. A. Vignali
OBJECTIVE—Type 1 diabetes is mediated by T-cell entry into pancreatic islets and destruction of insulin-producing β-cells. The relative contribution of T-cells specific for different autoantigens is largely unknown because relatively few have been assessed in vivo. RESEARCH DESIGN AND METHODS—We generated mice possessing a monoclonal population of T-cells expressing 1 of 17 T-cell receptors (TCR) specific for either known autoantigens (GAD65, insulinoma-associated protein 2 (IA2), IA2β/phogrin, and insulin), unknown islet antigens, or control antigens on a NOD.scid background using retroviral-mediated stem cell gene transfer and 2A-linked multicistronic retroviral vectors (referred to herein as retrogenic [Rg] mice). The TCR Rg approach provides a mechanism by which T-cells with broad phenotypic differences can be directly compared. RESULTS—Neither GAD- nor IA2-specific TCRs mediated T-cell islet infiltration or diabetes even though T-cells developed in these Rg mice and responded to their cognate epitope. IA2β/phogrin and insulin-specific Rg T-cells produced variable levels of insulitis, with one TCR producing delayed diabetes. Three TCRs specific for unknown islet antigens produced a hierarchy of insulitogenic and diabetogenic potential (BDC-2.5 > NY4.1 > BDC-6.9), while a fourth (BDC-10.1) mediated dramatically accelerated disease, with all mice diabetic by day 33, well before full T-cell reconstitution (days 42–56). Remarkably, as few as 1,000 BDC-10.1 Rg T-cells caused rapid diabetes following adoptive transfer into NOD.scid mice. CONCLUSIONS—Our data show that relatively few autoantigen-specific TCRs can mediate islet infiltration and β-cell destruction on their own and that autoreactivity does not necessarily imply pathogenicity.
Journal of Immunology | 2004
Paula Y. Arnold; Amanda R. Burton; Dario A. A. Vignali
TCR transgenic mice are valuable tools for dissecting the role of autoantigen-specific T cells in the pathogenesis of type 1 diabetes but are time-consuming to generate and backcross onto congenic strains. To circumvent these limitations, we developed a new approach to rapidly generate mice expressing TCR using retroviral-mediated stem cell gene transfer and a novel picornavirus-like 2A peptide to link the TCR α- and β-chains in a single retroviral vector. We refer to these as retrogenic (Rg) mice to avoid confusion with conventional transgenic mice. Our approach was validated by demonstrating that Rg nonobese diabetic (NOD)-scid mice expressing the diabetogenic TCRs, BDC2.5 and 4.1, generate clonotype-positive T cells and develop diabetes. We then expressed three TCR specific for either glutamate decarboxylase (GAD) 206–220 or GAD 524–538 or for hen egg lysozyme 11–25 as a control in NOD, NOD-scid, and B6.H2g7 mice. Although T cells from these TCR Rg mice responded to their respective Ag in vitro, the GAD-specific T cells exhibited a naive, resting phenotype in vivo. However, T cells from Rg mice challenged with Ag in vivo became activated and developed into memory cells. Neither of the GAD-reactive TCR accelerated or protected mice from diabetes, nor did activated T cells transfer or protect against diabetes in NOD-scid recipients, suggesting that GAD may not be a primary target for diabetogenic T cells. Generation of autoantigen-specific TCR Rg mice represents a powerful approach for the analysis of a wide variety of autoantigens.
Genome Medicine | 2017
Ti-Cheng Chang; Robert Carter; Yongjin Li; Yuxin Li; Hong Wang; Michael Edmonson; Xiang Chen; Paula Y. Arnold; Terrence L. Geiger; Gang Wu; Junmin Peng; Michael A. Dyer; James R. Downing; Douglas R. Green; Paul G. Thomas; Jinghui Zhang
BackgroundNeoepitopes derived from tumor-specific somatic mutations are promising targets for immunotherapy in childhood cancers. However, the potential for such therapies in targeting these epitopes remains uncertain due to a lack of knowledge of the neoepitope landscape in childhood cancer. Studies to date have focused primarily on missense mutations without exploring gene fusions, which are a major class of oncogenic drivers in pediatric cancer.MethodsWe developed an analytical workflow for identification of putative neoepitopes based on somatic missense mutations and gene fusions using whole-genome sequencing data. Transcriptome sequencing data were incorporated to interrogate the expression status of the neoepitopes.ResultsWe present the neoepitope landscape of somatic alterations including missense mutations and oncogenic gene fusions identified in 540 childhood cancer genomes and transcriptomes representing 23 cancer subtypes. We found that 88% of leukemias, 78% of central nervous system tumors, and 90% of solid tumors had at least one predicted neoepitope. Mutation hotspots in KRAS and histone H3 genes encode potential epitopes in multiple patients. Additionally, the ETV6-RUNX1 fusion was found to encode putative neoepitopes in a high proportion (69.6%) of the pediatric leukemia harboring this fusion.ConclusionsOur study presents a comprehensive repertoire of potential neoepitopes in childhood cancers, and will facilitate the development of immunotherapeutic approaches designed to exploit them. The source code of the workflow is available at GitHub (https://github.com/zhanglabstjude/neoepitope).
Journal of Immunology | 1999
Dhaval M. Patel; Paula Y. Arnold; Gregory A. White; John P. Nardella
Journal of Immunology | 1996
S K Rendall; Paula Y. Arnold; John P. Nardella; Gregory A. White
Journal of Immunological Methods | 2002
Paula Y. Arnold; Kate M. Vignali; Timothy B. Miller; Nicole L. La Gruta; Linda S. Cauley; Laura Haynes; Susan L. Swain; David L. Woodland; Dario A. A. Vignali
Human Immunology | 2018
Po-Chien Chou; Ewelina Mamcarz; Sallyanne C. Fossey; Paula Y. Arnold
Human Immunology | 2018
Paula Y. Arnold; Shane J. Cross; Brandon Triplett