Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulette Conget is active.

Publication


Featured researches published by Paulette Conget.


British Journal of Haematology | 2000

Mesenchymal progenitor cells in human umbilical cord blood.

Alejandro Erices; Paulette Conget; José J. Minguell

Haemopoiesis is sustained by two main cellular components, the haematopoietic cells (HSCs) and the mesenchymal progenitor cells (MPCs). MPCs are multipotent and are the precursors for marrow stroma, bone, cartilage, muscle and connective tissues. Although the presence of HSCs in umbilical cord blood (UCB) is well known, that of MPCs has been not fully evaluated. In this study, we examined the ability of UCB harvests to generate in culture cells with characteristics of MPCs. Results showed that UCB‐derived mononuclear cells, when set in culture, gave rise to adherent cells, which exhibited either an osteoclast‐ or a mesenchymal‐like phenotype. Cells with the osteoclast phenotype were multinucleated, expressed TRAP activity and antigens CD45 and CD51/CD61. In turn, cells with the mesenchymal phenotype displayed a fibroblast‐like morphology and expressed several MPC‐related antigens (SH2, SH3, SH4, ASMA, MAB 1470, CD13, CD29 and CD49e). Our results suggest that preterm, as compared with term, cord blood is richer in mesenchymal progenitors, similar to haematopoietic progenitors.


Experimental Biology and Medicine | 2001

MESENCHYMAL STEM CELLS

José J. Minguell; Alejandro Erices; Paulette Conget

Within the bone marrow stroma there exists a subset of nonhematopoietic cells referred to as mesenchymal stem or mesenchymal progenitor cells. These cells can be ex vivo expanded and induced, either in vitro or in vivo, to terminally differentiate into osteoblasts, chondrocytes, adipocytes, tenocytes, myotubes, neural cells, and hematopoietic-supporting stroma. The multipotential of these cells, their easy isolation and culture, as well as their high ex vivo expansive potential make these cells an attractive therapeutic tool. In this work we will review the information dealing with the biology of mesenchymal progenitors as it has been revealed mainly by ex vivo studies performed with bone marrow-derived cells. The discussed topics include, among others, characteristics of mesenchymal progenitors, evidence for the existence of a vast repertoire of uncommitted and committed progenitors both in the bone marrow and in mesenchymal tissues, a diagram for their proliferative hierarchy, and comments on mobilization, microenvironment, and clinical use of mesenchymal progenitors. Despite the enormous data available at molecular and cellular levels, it is evident that a number of fundamental questions still need to be resolved before mesenchymal progenitors can be used for safe and effective clinical applications in the context of both cell and gene therapies.


Journal of Cellular Physiology | 1999

Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells

Paulette Conget; José J. Minguell

Bone marrow stroma provides the microenvironment for hematopoiesis and is also the source of mesenchymal progenitors (mesenchymal or marrow stromal cells [MSC]) that may serve as long‐lasting precursors for bone, cartilage, lung, and muscle. While several studies have indicated the differentiation potential of MSC, few studies have been performed on the cells themselves. In an attempt to further expand our knowledge on these cells, we have performed studies on their cell cycle, immuno‐ and adhesive‐phenotype, ex vivo expansion, and differentiation properties. MSC cultures have been initiated from human bone marrow low‐density mononuclear cells and maintained in the absence of differentiation stimuli and hematopoietic cells. The homogenous layer of adherent cells thus formed exhibits a typical fibroblastlike morphology, a population doubling time of 33 h, a large expansive potential, and cell cycle characteristics including a subset (20%) of quiescent cells. The antigenic phenotype of MSC is not unique, borrowing features of mesenchymal, endothelial, and epithelial cells. Together, MSC express several adhesion‐related antigens, like the integrin subunits α4, α5, β1, integrins αvβ3 and αvβ5, ICAM‐1, and CD44H. MSC produce and functionally adhere to extracellular matrix molecules. When incubated under proper stimuli, MSC differentiate into osteoblasts or adipocytes. Taken together, these results demonstrate that adherent marrow‐derived cells cultured in the absence of hematopoietic cells and differentiation stimulus give rise to a population of cells with phenotypical and functional features of mesenchymal progenitors. The existence of a subset of quiescent cells in MSC cultures seems to be extremely significant, since their number and properties should be enough to sustain a steady supply of cells that upon proliferation and commitment may serve as precursors for a number of nonhematopoietic tissues. J. Cell. Physiol. 181:67–73, 1999.


Biology of Blood and Marrow Transplantation | 2008

Systemic Administration of Multipotent Mesenchymal Stromal Cells Reverts Hyperglycemia and Prevents Nephropathy in Type 1 Diabetic Mice

Fernando Ezquer; Marcelo Ezquer; Daniela B. Parrau; Daniel Carpio; Alejandro Yáñez; Paulette Conget

Multipotent mesenchymal stromal cells (MSCs), often labeled mesenchymal stem cells, contribute to tissue regeneration in injured bone and cartilage, as well as in the infarcted heart, brain, and kidney. We hypothesize that MSCs might also contribute to pancreas and kidney regeneration in diabetic individuals. Therefore, in streptozotocin (STZ)-induced type 1 diabetes C57BL/6 mice, we tested whether a single intravenous dose of MSCs led to recovery of pancreatic and renal function and structure. When hyperglycemia, glycosuria, massive beta-pancreatic islets destruction, and mild albuminuria were evident (but still without renal histopathologic changes), mice were randomly separated in 2 groups: 1 received 0.5 x 10(6) MSCs that have been ex vivo expanded (and characterized according to their mesenchymal differentiation potential), and the other group received the vehicle. Within a week, only MSC-treated diabetic mice exhibited significant reduction in their blood glucose levels, reaching nearly euglycemic values a month later. Reversion of hyperglycemia and glycosuria remained for 2 months at least. An increase in morphologically normal beta-pancreatic islets was observed only in MSC-treated diabetic mice. Furthermore, in those animals albuminuria was reduced and glomeruli were histologically normal. On the other side, untreated diabetic mice presented glomerular hyalinosis and mesangial expansion. Thus, MSC administration resulted in beta-pancreatic islets regeneration and prevented renal damage in diabetic animals. Our preclinical results suggest bone marrow-derived MSC transplantation as a cell therapy strategy to treat type 1 diabetes and prevent diabetic nephropathy, its main complication.


Experimental Hematology | 2000

Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells

Paulette Conget; José J. Minguell

OBJECTIVE Based on their differentiation properties and facilely of ex vivo expansion, human bone marrow mesenchymal progenitor cells (MPC), are considered as attractive targets to deliver foreign genes to the bone marrow or other mesenchymal tissues. In this study we investigated the feasibility of transduce MPC with adenoviral vectors (Adv). METHODS MPC were expanded ex vivo and transduced with replication-defective Adv-containing reporter genes (lacZ or GFP) under the control of CMV promoter. Transfection efficiency was assessed by microscopical scoring or by flow cytometry. Expression and involvement of Adv-attachment (CAR) and Adv-internalization (integrins alphav) receptors were evaluated by flow cytometric studies. RESULTS Transgene expression analysis showed that only 19%+/-3% of cells expressed the transgenes at high levels. MPC express the attachment and internalization receptors required for Adv infection. While integrins alphavbeta3 and alphavbeta5 are expressed by all MPC, CAR is solely expressed by a fraction of low size cells. Antibodies against CAR and alphavbeta5, but not against alphavbeta3, blocked Adv-mediated gene transfer into MPC, showing that CAR and alphavbeta5 are required for infection. Because alphavbeta5, as compared with CAR, is overexpressed in MPC, the results suggest that the efficiency of Adv-mediated gene transfer into MPC depends on the level of CAR expression. CONCLUSION These findings demonstrate that Adv may be useful to engineer a subpopulation of ex vivo expanded human mesenchymal progenitors, with a high level of transgene expression.


Stem Cells and Development | 2010

Human Mesenchymal Stem Cells Efficiently Manage Oxidative Stress

Araceli Valle-Prieto; Paulette Conget

The transplantation of mesenchymal stem cells (MSCs) proves to be useful to treat pathologies in which tissue damage is linked to oxidative stress (OS). The aim of our work was to evaluate whether primary human MSCs (hMSCs) can manage OS. For this, in vitro we assessed the following parameters: (1) cell viability of hMSCs exposed to increasing concentrations of reactive oxygen species (ROS; source: hydrogen peroxide), reactive nitrogen species (RNS; source: S-nitroso-N-acetylpenicillamine), or both (ROS and RNS; source: 3-morpholinosydnonimine hydrochloride); (2) intracellular level of reactive species in hMSCs exposed to ROS and RNS; (3) basal gene expression and activity of superoxide dismutases, catalase, and glutathione peroxidase of hMSCs; (4) basal level of total glutathione (GSx) of hMSCs; and (5) cell viability of GSx-depleted hMSCs exposed to ROS and/or RNS. Results showed that hMSCs have a high resistance to OS-induced death, which correlates with low levels of intracellular reactive species, constitutive expression of enzymes required to manage OS, and high levels of GSx. When hMSCs were depleted of GSx they lose their capacity to manage OS. Thus, in vitro hMSCs were able to scavenge ROS and RNS and efficiently manage OS. If this potential is maintained in vivo, hMSCs could also contribute to tissue regeneration, limiting OS-induced tissue damage.


Cytotherapy | 2010

Replenishment of type VII collagen and re-epithelialization of chronically ulcerated skin after intradermal administration of allogeneic mesenchymal stromal cells in two patients with recessive dystrophic epidermolysis bullosa.

Paulette Conget; Fernando A. Rodríguez; Susanne M. Krämer; Carolina Allers; Valeska Simon; Francis Palisson; Sergio González; María Joao Yubero

In animal models it has been shown that mesenchymal stromal cells (MSC) contribute to skin regeneration and accelerate wound healing. We evaluated whether allogeneic MSC administration resulted in an improvement in the skin of two patients with recessive dystrophic epidermolysis bullosa (RDEB; OMIM 226600). Patients had absent type VII collagen immunohistofluorescence and since birth had suffered severe blistering and wounds that heal with scarring. Vehicle or 0.5 x 10(6) MSC were infused intradermally in intact and chronic ulcerated sites. One week after intervention, in MSC-treated skin type VII collagen was detected along the basement membrane zone and the dermal-epidermal junction was continuous. Re-epithelialization of chronic ulcerated skin was observed only near MSC administration sites. In both patients the observed clinical benefit lasted for 4 months. Thus intradermal administration of allogeneic MSC associates with type VII collagen replenishment at the dermal-epidermal junction, prevents blistering and improves wound healing in unconditioned patients with RDEB.


Cell Transplantation | 2003

Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion.

Alejandro Erices; Carolina Allers; Paulette Conget; Cecilia Rojas; José J. Minguell

Bone marrow is the residence site of mesenchymal stem cells (MSC), which upon commitment and maturation develop into several mesenchymal phenotypes. Recently, we have described the presence of MSC in human cord blood (cbMSC) and informed that their properties are the same as those for MSC obtained from adult bone marrow. In this study we have investigated the capability of transplanted cbMSC to home and survive in the marrow of unconditioned nude mice. cbMSC utilized for transplantation studies were characterized by morphology, differentiation potential, and immunophenotype. After transplantation by systemic infusion, human DNA (as detected by PCR amplification of human-specific β-globin gene) was detected in the marrow of recipients as well as in ex vivo-expanded stromal cells prepared from the marrow of transplanted animals. These results demonstrate homing and survival of cbMSC into the recipient marrow and also suggest a mesenchymal-orientated fate of engrafted cells, because human DNA was also detected in cells of other recipient tissues, like cardiac muscle, teeth, and spleen.


Brazilian Journal of Medical and Biological Research | 2000

Biology and clinical utilization of mesenchymal progenitor cells.

Minguell Jj; Paulette Conget; Alejandro Erices

Within the complex cellular arrangement found in the bone marrow stroma there exists a subset of nonhematopoietic cells referred to as mesenchymal progenitor cells (MPC). These cells can be expanded ex vivo and induced, either in vitro or in vivo, to terminally differentiate into at least seven types of cells: osteocytes, chondrocytes, adipocytes, tenocytes, myotubes, astrocytes and hematopoietic-supporting stroma. This broad multipotentiality, the feasibility to obtain MPC from bone marrow, cord and peripheral blood and their transplantability support the impact that the use of MPC will have in clinical settings. However, a number of fundamental questions about the cellular and molecular biology of MPC still need to be resolved before these cells can be used for safe and effective cell and gene therapies intended to replace, repair or enhance the physiological function of the mesenchymal and/or hematopoietic systems.


Stem Cells | 2012

The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment.

Fernando Ezquer; Marcelo Ezquer; David Contador; Micaela Ricca; Valeska Simon; Paulette Conget

Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that results from cell‐mediated autoimmune destruction of insulin‐producing cells. In T1DM animal models, it has been shown that the systemic administration of multipotent mesenchymal stromal cells, also referred as to mesenchymal stem cells (MSCs), results in the regeneration of pancreatic islets. Mechanisms underlying this effect are still poorly understood. Our aims were to assess whether donor MSCs (a) differentiate into pancreatic β‐cells and (b) modify systemic and pancreatic pathophysiologic markers of T1DM. After the intravenous administration of 5 × 105 syngeneic MSCs, we observed that mice with T1DM reverted their hyperglycemia and presented no donor‐derived insulin‐producing cells. In contrast, 7 and 65 days post‐transplantation, MSCs were engrafted into secondary lymphoid organs. This correlated with a systemic and local reduction in the abundance of autoaggressive T cells together with an increase in regulatory T cells. Additionally, in the pancreas of mice with T1DM treated with MSCs, we observed a cytokine profile shift from proinflammatory to antinflammatory. MSC transplantation did not reduce pancreatic cell apoptosis but recovered local expression and increased the circulating levels of epidermal growth factor, a pancreatic trophic factor. Therefore, the antidiabetic effect of MSCs intravenously administered is unrelated to their transdifferentiation potential but to their capability to restore the balance between Th1 and Th2 immunological responses along with the modification of the pancreatic microenvironment. Our data should be taken into account when designing clinical trials aimed to evaluate MSC transplantation in patients with T1DM since the presence of endogenous precursors seems to be critical in order to restore glycemic control. STEM Cells2012;30:1664–1674

Collaboration


Dive into the Paulette Conget's collaboration.

Top Co-Authors

Avatar

Fernando Ezquer

Universidad del Desarrollo

View shared research outputs
Top Co-Authors

Avatar

Marcelo Ezquer

Universidad del Desarrollo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Figueroa

Universidad del Desarrollo

View shared research outputs
Top Co-Authors

Avatar

Flavia Bruna

Universidad del Desarrollo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafael Calvo

Universidad del Desarrollo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina Allers

Universidad del Desarrollo

View shared research outputs
Researchain Logo
Decentralizing Knowledge