Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulina D. Pavinski Bitar is active.

Publication


Featured researches published by Paulina D. Pavinski Bitar.


Molecular Biology and Evolution | 2013

Evolutionary and population genomics of the cavity causing bacteria Streptococcus mutans

Omar E. Cornejo; Tristan Lefébure; Paulina D. Pavinski Bitar; Ping Lang; Vincent P. Richards; Kirsten Eilertson; Thuy Do; David Beighton; Lin Zeng; Sang-Joon Ahn; Robert A. Burne; Adam Siepel; Carlos Bustamante; Michael J. Stanhope

Streptococcus mutans is widely recognized as one of the key etiological agents of human dental caries. Despite its role in this important disease, our present knowledge of gene content variability across the species and its relationship to adaptation is minimal. Estimates of its demographic history are not available. In this study, we generated genome sequences of 57 S. mutans isolates, as well as representative strains of the most closely related species to S. mutans (S. ratti, S. macaccae, and S. criceti), to identify the overall structure and potential adaptive features of the dispensable and core components of the genome. We also performed population genetic analyses on the core genome of the species aimed at understanding the demographic history, and impact of selection shaping its genetic variation. The maximum gene content divergence among strains was approximately 23%, with the majority of strains diverging by 5-15%. The core genome consisted of 1,490 genes and the pan-genome approximately 3,296. Maximum likelihood analysis of the synonymous site frequency spectrum (SFS) suggested that the S. mutans population started expanding exponentially approximately 10,000 years ago (95% confidence interval [CI]: 3,268-14,344 years ago), coincidental with the onset of human agriculture. Analysis of the replacement SFS indicated that a majority of these substitutions are under strong negative selection, and the remainder evolved neutrally. A set of 14 genes was identified as being under positive selection, most of which were involved in either sugar metabolism or acid tolerance. Analysis of the core genome suggested that among 73 genes present in all isolates of S. mutans but absent in other species of the mutans taxonomic group, the majority can be associated with metabolic processes that could have contributed to the successful adaptation of S. mutans to its new niche, the human mouth, and with the dietary changes that accompanied the origin of agriculture.


Infection, Genetics and Evolution | 2011

Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae.

Vincent P. Richards; Ping Lang; Paulina D. Pavinski Bitar; Tristan Lefébure; Y.H. Schukken; Ruth N. Zadoks; Michael J. Stanhope

In addition to causing severe invasive infections in humans, Streptococcus agalactiae, or group B Streptococcus (GBS), is also a major cause of bovine mastitis. Here we provide the first genome sequence for S. agalactiae isolated from a cow diagnosed with clinical mastitis (strain FSL S3-026). Comparison to eight S. agalactiae genomes obtained from human disease isolates revealed 183 genes specific to the bovine strain. Subsequent polymerase chain reaction (PCR) screening for the presence/absence of a subset of these loci in additional bovine and human strains revealed strong differentiation between the two groups (Fisher exact test: p<0.0001). The majority of the bovine strain-specific genes (∼ 85%) clustered tightly into eight genomic islands, suggesting these genes were acquired through lateral gene transfer (LGT). This bovine GBS also contained an unusually high proportion of insertion sequences (4.3% of the total genome), suggesting frequent genomic rearrangement. Comparison to other mastitis-causing species of bacteria provided strong evidence for two cases of interspecies LGT within the shared bovine environment: bovine S. agalactiae with Streptococcus uberis (nisin U operon) and Streptococcus dysgalactiae subsp. dysgalactiae (lactose operon). We also found evidence for LGT, involving the salivaricin operon, between the bovine S. agalactiae strain and either Streptococcus pyogenes or Streptococcus salivarius. Our findings provide insight into mechanisms facilitating environmental adaptation and acquisition of potential virulence factors, while highlighting both the key role LGT has played in the recent evolution of the bovine S. agalactiae strain, and the importance of LGT among pathogens within a shared environment.


Genome Biology and Evolution | 2010

Evolutionary Dynamics of Complete Campylobacter Pan-Genomes and the Bacterial Species Concept

Tristan Lefébure; Paulina D. Pavinski Bitar; Haruo Suzuki; Michael J. Stanhope

Defining bacterial species and understanding the relative cohesiveness of different components of their genomes remains a fundamental problem in microbiology. Bacterial species tend to be comprised of both a set of core and dispensable genes, with the sum of these two components forming the species pan-genome. The role of the core and dispensable genes in defining bacterial species and the question of whether pan-genomes are finite or infinite remain unclear. Here we demonstrate, through the analysis of 96 genome sequences derived from two closely related sympatric sister species of pathogenic bacteria (Campylobacter coli and C. jejuni), that their pan-genome is indeed finite and that there are unique and cohesive features to each of their genomes defining their genomic identity. The two species have a similar pan-genome size; however, C. coli has acquired a larger core genome and each species has evolved a number of species-specific core genes, possibly reflecting different adaptive strategies. Genome-wide assessment of the level of lateral gene transfer within and between the two sister species, as well as within the core and non-core genes, demonstrates a resistance to interspecies recombination in the core genome of the two species and therefore provides persuasive support for the core genome hypothesis for bacterial species.


Genome Biology and Evolution | 2014

Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus

Vincent P. Richards; Sara R. Palmer; Paulina D. Pavinski Bitar; Xiang Qin; George M. Weinstock; Sarah K. Highlander; Christopher D. Town; Robert A. Burne; Michael J. Stanhope

The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group.


Inflammatory Bowel Diseases | 2014

Inflammation-associated adherent-invasive Escherichia coli are enriched in pathways for use of propanediol and iron and M-cell translocation.

Belgin Dogan; Haruo Suzuki; Deepali Herlekar; Balfour R. Sartor; Barry J. Campbell; Carol L. Roberts; Katrina Stewart; Ellen J. Scherl; Yasemin Araz; Paulina D. Pavinski Bitar; Tristan Lefébure; Brendan Chandler; Y.H. Schukken; Michael J. Stanhope; Kenneth W. Simpson

Background:Perturbations of the intestinal microbiome, termed dysbiosis, are linked to intestinal inflammation. Isolation of adherent-invasive Escherichia coli (AIEC) from intestines of patients with Crohns disease (CD), dogs with granulomatous colitis, and mice with acute ileitis suggests these bacteria share pathoadaptive virulence factors that promote inflammation. Methods:To identify genes associated with AIEC, we sequenced the genomes of phylogenetically diverse AIEC strains isolated from people with CD (4), dogs with granulomatous colitis (2), and mice with ileitis (2) and 1 non-AIEC strain from CD ileum and compared them with 38 genome sequences of E. coli and Shigella. We then determined the prevalence of AIEC-associated genes in 49 E. coli strains from patients with CD and controls and correlated genotype with invasion of intestinal epithelial cells, persistence within macrophages, AIEC pathotype, and growth in standardized conditions. Results:Genes encoding propanediol utilization (pdu operon) and iron acquisition (yersiniabactin, chu operon) were overrepresented in AIEC relative to nonpathogenic E. coli. PduC (propanediol dehydratase) was enriched in CD-derived AIEC, correlated with increased cellular invasion, and persistence in vitro and was increasingly expressed in fucose-containing media. Growth of AIEC required iron, and the presence of chuA (heme acquisition) correlated with persistence in macrophages. CD-associated AIEC with lpfA154 (long polar fimbriae) demonstrated increased invasion of epithelial cells and translocation across M cells. Conclusions:Our findings provide novel insights into the genetic basis of the AIEC pathotype, supporting the concept that AIEC are equipped to exploit and promote intestinal inflammation and reveal potential targets for intervention against AIEC and inflammation-associated dysbiosis.


Genome Biology and Evolution | 2011

Comparative Genomic Analysis of the Streptococcus dysgalactiae Species Group: Gene Content, Molecular Adaptation, and Promoter Evolution

Haruo Suzuki; Tristan Lefébure; Melissa J. Hubisz; Paulina D. Pavinski Bitar; Ping Lang; Adam Siepel; Michael J. Stanhope

Comparative genomics of closely related bacterial species with different pathogenesis and host preference can provide a means of identifying the specifics of adaptive differences. Streptococcus dysgalactiae (SD) is comprised of two subspecies: S. dysgalactiae subsp. equisimilis is both a human commensal organism and a human pathogen, and S. dysgalactiae subsp. dysgalactiae is strictly an animal pathogen. Here, we present complete genome sequences for both taxa, with analyses involving other species of Streptococcus but focusing on adaptation in the SD species group. We found little evidence for enrichment in biochemical categories of genes carried by each SD strain, however, differences in the virulence gene repertoire were apparent. Some of the differences could be ascribed to prophage and integrative conjugative elements. We identified approximately 9% of the nonrecombinant core genome to be under positive selection, some of which involved known virulence factors in other bacteria. Analyses of proteomes by pooling data across genes, by biochemical category, clade, or branch, provided evidence for increased rates of evolution in several gene categories, as well as external branches of the tree. Promoters were primarily evolving under purifying selection but with certain categories of genes evolving faster. Many of these fast-evolving categories were the same as those associated with rapid evolution in proteins. Overall, these results suggest that adaptation to changing environments and new hosts in the SD species group has involved the acquisition of key virulence genes along with selection of orthologous protein-coding loci and operon promoters.


BMC Genomics | 2012

Comparative genomic analysis of the genus Staphylococcus including Staphylococcus aureus and its newly described sister species Staphylococcus simiae

Haruo Suzuki; Tristan Lefébure; Paulina D. Pavinski Bitar; Michael J. Stanhope

BackgroundStaphylococcus belongs to the Gram-positive low G + C content group of the Firmicutes division of bacteria. Staphylococcus aureus is an important human and veterinary pathogen that causes a broad spectrum of diseases, and has developed important multidrug resistant forms such as methicillin-resistant S. aureus (MRSA). Staphylococcus simiae was isolated from South American squirrel monkeys in 2000, and is a coagulase-negative bacterium, closely related, and possibly the sister group, to S. aureus. Comparative genomic analyses of closely related bacteria with different phenotypes can provide information relevant to understanding adaptation to host environment and mechanisms of pathogenicity.ResultsWe determined a Roche/454 draft genome sequence for S. simiae and included it in comparative genomic analyses with 11 other Staphylococcus species including S. aureus. A genome based phylogeny of the genus confirms that S. simiae is the sister group to S. aureus and indicates that the most basal Staphylococcus lineage is Staphylococcus pseudintermedius, followed by Staphylococcus carnosus. Given the primary niche of these two latter taxa, compared to the other species in the genus, this phylogeny suggests that human adaptation evolved after the split of S. carnosus. The two coagulase-positive species (S. aureus and S. pseudintermedius) are not phylogenetically closest but share many virulence factors exclusively, suggesting that these genes were acquired by horizontal transfer. Enrichment in genes related to mobile elements such as prophage in S. aureus relative to S. simiae suggests that pathogenesis in the S. aureus group has developed by gene gain through horizontal transfer, after the split of S. aureus and S. simiae from their common ancestor.ConclusionsComparative genomic analyses across 12 Staphylococcus species provide hypotheses about lineages in which human adaptation has taken place and contributions of horizontal transfer in pathogenesis.


Infection, Genetics and Evolution | 2013

Comparative characterization of the virulence gene clusters (lipooligosaccharide [LOS] and capsular polysaccharide [CPS]) for Campylobacter coli, Campylobacter jejuni subsp. jejuni and related Campylobacter species.

Vincent P. Richards; Tristan Lefébure; Paulina D. Pavinski Bitar; Michael J. Stanhope

Campylobacter jejuni subsp. jejuni and Campylobacter coli are leading causes of gastroenteritis, with virulence linked to cell surface carbohydrate diversity. Although the associated gene clusters are well studied for C. jejuni subsp. jejuni, C. coli has been largely neglected. Here we provide comparative analysis of the lipooligosaccharide (LOS) and capsular polysaccharide (CPS) gene clusters, using genome and cluster sequence data for 36 C. coli strains, 67 C. jejuni subsp. jejuni strains and ten additional Campylobacter species. Similar to C. jejuni subsp. jejuni, C. coli showed high LOS/CPS gene diversity, with each cluster delineated into eight gene content classes. This diversity was predominantly due to extensive gene gain/loss, with the lateral transfer of genes likely occurring both within and between species and also between the LOS and CPS. Additional mechanisms responsible for LOS/CPS diversity included phase-variable homopolymeric repeats, gene duplication/inactivation, and possibly host environment selection pressure. Analyses also showed that (i) strains of C. coli and Campylobacter upsaliensis possessed genes homologous to the sialic acid genes implicated in the neurological disorder Guillain-Barré syndrome (GBS), and (ii) C. coli LOS classes were differentiated between bovine and poultry hosts, potentially aiding post infection source tracking.


BMC Microbiology | 2012

Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

Vincent P. Richards; Ruth N. Zadoks; Paulina D. Pavinski Bitar; Tristan Lefébure; Ping Lang; Brenda G. Werner; Linda L. Tikofsky; P. Moroni; Michael J. Stanhope

BackgroundStreptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen.ResultsHere we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche.ConclusionThis study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen.


Infection, Genetics and Evolution | 2008

Positive selection in penicillin-binding proteins 1a, 2b, and 2x from Streptococcus pneumoniae and its correlation with amoxicillin resistance development.

Michael J. Stanhope; Tristan Lefébure; Stacey L. Walsh; Julie A. Becker; Ping Lang; Paulina D. Pavinski Bitar; Linda A. Miller; Michael J. Italia; Heather Amrine-Madsen

The efficacy of beta-lactam antibiotics in Streptococcus pneumoniae has been compromised because of the development of altered penicillin-binding proteins (PBPs), however, this has been less so for amoxicillin than for penicillin. Recently, there have been a number of important methods developed to detect molecular adaptation in protein coding genes. The purpose of this study is to employ modern molecular selection approaches to predict sites under positive selection pressure in PBPs, derived from a large international S. pneumoniae collection of amoxicillin resistant and susceptible isolates, and encompassing a comparative data set of 354 pbp1a, 335 pbp2b, and 389 pbp2x gene sequences. A correspondence discriminant analysis (CDA) of positively selected pbp sites and amoxicillin MIC (minimum inhibitory concentration) values is then used to detect sites under positive selection pressure that are important in discriminating different amoxicillin MICs. Molecular adaptation was evident throughout PBP2X, with numerous positively selected sites in both the transpeptidase (TP) and C-terminal domains, strongly correlated with discriminating amoxicillin MICs. In the case of PBP1A positive selection was present in the glycosyltransfer (GT), TP and C-terminal domains. Sites within the TP domain tended to be correlated with the discrimination of low from intermediate MICs, whereas sites within the C-terminal tail, with a discrimination of intermediate from fully resistant. Most of the positively selected sites within PBP2B were in the N-terminal domain and were not correlated with amoxicillin MICs, however, several sites taken from the literature for the TP domain were strongly associated with discriminating high from intermediate level amoxicillin resistance. Many of the positively selected sites could be directly associated with functional inferences based on the crystal structures of these proteins. Our results suggest that clinical emphasis on TP domain sequences of these proteins may result in missing information relevant to antibiotic resistance development.

Collaboration


Dive into the Paulina D. Pavinski Bitar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Siepel

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge