Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulina M. Dominiak is active.

Publication


Featured researches published by Paulina M. Dominiak.


Acta Crystallographica Section A | 2009

Towards the best model for H atoms in experimental charge-density refinement.

Anna A. Hoser; Paulina M. Dominiak; Krzysztof Woźniak

The consequences of different treatments of H atoms in experimental charge-density studies are discussed. Geometric and topological parameters obtained after applying four different H-atom models in multipolar refinement on high-resolution X-ray data only were compared with the results obtained for a reference joint high-resolution X-ray/neutron refinement. The geometry and the topological critical point and integrated parameters closest to the reference values were obtained after a mixed refinement (high-order refinement of heavy atoms, low-angle refinement of H atoms and elongation of the X-H distance to the average neutron bond lengths) supplemented by an estimation of the anisotropic thermal motions of H atoms using the SHADE program. Such a procedure works very well even for strong hydrogen bonds. The worst fit to the reference results for both critical point and integrated parameters was obtained when only the standardization to the average neutron X-H distances was applied. The non-H-atom parameters are also systematically influenced by the H-atom modeling. In order to compare topological and integrated properties calculated for H and non-H atoms in multipolar refinement when there are no neutron data, the same treatment of H atoms (ideally the mixed refinement + estimated anisotropic atomic displacement parameters for H atoms) should be applied.


Acta Crystallographica Section A | 2012

New version of the theoretical databank of transferable aspherical pseudoatoms, UBDB2011 – towards nucleic acid modelling

Katarzyna N. Jarzembska; Paulina M. Dominiak

The theoretical databank of aspherical pseudoatoms (UBDB) was recently extended with over 100 new atom types present in RNA, DNA and in some other molecules of great importance in biology and pharmacy. The atom-type definitions were modified and new atom keys added to provide a more precise description of the atomic charge-density distribution. X-H bond lengths were updated according to recent neutron diffraction studies and implemented in the LSDB program as well as used for modelling the appropriate atom types. The UBDB2011 databank was extensively tested. Electrostatic interaction energies calculated on the basis of the databank of aspherical atom models were compared with the corresponding results obtained directly from wavefunctions at the same level of theory (SPDFG/B3LYP/6-31G** and SPDFG/B3LYP/aug-cc-pVDZ). Various small complexes were analysed to cover most of the different interaction types, i.e. adenine-thymine and guanine-cytosine with hydrogen bonding, guanine-adenine with stacking contacts, and a group of neutral and charged species of nucleic acid bases interacting with amino acid side chains. The energy trends are well preserved (R(2) > 0.9); however the energy values differ between the two methods by about 4 kcal mol(-1) (1 kcal mol(-1) = 4.184 kJ mol(-1)) on average. What is noticeable is that the replacement of one basis set by another in a purely quantum chemical approach leads to the same electrostatic energy difference, i.e. of about 4 kcal mol(-1) in magnitude. The present work opens up the possibility of applying the UBDB2011 for macromolecules that contain DNA/RNA fragments. This study shows that on the basis of the UBDB2011 databank electrostatic interaction energies can be estimated and structure refinements carried out. However, some method limitations are apparent.


Acta Crystallographica Section A | 2011

Verification of structural and electrostatic properties obtained by the use of different pseudoatom databases.

Joanna M. Bąk; Sławomir Domagała; Christian B. Hübschle; Christian Jelsch; Birger Dittrich; Paulina M. Dominiak

The existing pseudoatom databases (ELMAM, Invariom, UBDB and ELMAM2) enable structure refinement to be performed with the use of aspherical scattering factors computed from the transferable aspherical atom model (TAAM) as an alternative to independent atom model refinement. In addition, electrostatic properties can be estimated with the help of the databases. The quality of the structural and electrostatic properties obtained from the individual databases was tested. On the basis of a 100 K high-resolution single-crystal X-ray diffraction experiment on L-His-L-Ala dihydrate and 23 K high-resolution data for L-Ala [Destro & Marsh (1988). J. Phys. Chem. 92, 966-973], the structural properties, electron-density distributions and molecular electrostatic potentials obtained from different TAAMs were compared to each other and to reference models. Experimental multipolar models and theoretical models refined against theoretical structure factors computed from periodic density functional theory (DFT) calculations were compared to the TAAMs in order to determine which model best describes the crystal-field effect. Unperturbed wavefunctions based on the MP2 and DFT calculations and properties obtained directly from these were used as a reference to judge how properly the databases reproduce the properties of isolated molecules. For Gly-L-His dihydrate, D,L-His and the above-mentioned two crystal structures, deviations of the molecular dipole moments and Coulombic intermolecular interaction energies from the reference values were examined. Root-mean-square deviations (RMSDs) and correlation coefficients were used as a quantitative measure of the quality of the analysed properties. TAAM refinements reproduce X-H bond lengths optimized in theoretical periodic calculations. Structural properties obtained from different database models are similar to each other. The anisotropic displacement parameters from TAAMs are similar to the results of experimental multipolar refinement; differences are about 0.5 and 2.5% for high-resolution and low-resolution data, respectively. Differences in dipole-moment magnitudes calculated from database models are about 5%, and directions differ by up to 30°. The values of electrostatic interaction energies estimated from the individual TAAMs differ greatly from each other and from the reference values. RMSDs are about 9-15 and 22-33 kJ mol(-1) for UBDB and the other database models, respectively.


Science Advances | 2016

Hydrogen atoms can be located accurately and precisely by x-ray crystallography

Magdalena Woińska; Simon Grabowsky; Paulina M. Dominiak; Krzysztof Woźniak; Dylan Jayatilaka

Hydrogen atoms cannot hide from x-rays anymore but can instead be detected very reliably in routine measurements. Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A–H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A–H bond lengths with those from neutron measurements for A–H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors.


Acta Crystallographica Section D-biological Crystallography | 2014

Sunitinib: from charge-density studies to interaction with proteins.

Maura Malińska; Katarzyna N. Jarzembska; Anna M. Goral; Andrzej Kutner; Krzysztof Woźniak; Paulina M. Dominiak

Protein kinases are targets for the treatment of a number of diseases. Sunitinib malate is a type I inhibitor of tyrosine kinases and was approved as a drug in 2006. This contribution constitutes the first comprehensive analysis of the crystal structures of sunitinib malate and of complexes of sunitinib with a series of protein kinases. The high-resolution single-crystal X-ray measurement and aspherical atom databank approach served as a basis for reconstruction of the charge-density distribution of sunitinib and its protein complexes. Hirshfeld surface and topological analyses revealed a similar interaction pattern in the sunitinib malate crystal structure to that in the protein binding pockets. Sunitinib forms nine preserved bond paths corresponding to hydrogen bonds and also to the C-H···O and C-H···π contacts common to the VEGRF2, CDK2, G2, KIT and IT kinases. In general, sunitinib interacts with the studied proteins with a similar electrostatic interaction energy and can adjust its conformation to fit the binding pocket in such a way as to enhance the electrostatic interactions, e.g. hydrogen bonds in ligand-kinase complexes. Such behaviour may be responsible for the broad spectrum of action of sunitinib as a kinase inhibitor.


Biophysical Journal | 2015

Electrostatic Interactions in Aminoglycoside-RNA Complexes

Marta Kulik; Anna M. Goral; Maciej Jasiński; Paulina M. Dominiak; Joanna Trylska

Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity.


Acta Crystallographica Section A | 2012

Is it possible to derive quantitative information on polarization of electron density from the multipolar model

Joanna M. Bąk; Czyżnikowska Z; Paulina M. Dominiak

The accuracy of electrostatic properties estimated from the Hansen-Coppens multipolar model was verified. Tests were carried out to determine whether the multipolar model is accurate enough to study changes of electrostatic properties under the influence of a crystal field. Perturbed and unperturbed electron densities of individual molecules of amino acids and dipeptides were obtained from cluster and perturbation theory calculations. This enabled the changes in electrostatic properties values caused by polarization of the electron density to be characterized. Multipolar models were then fitted to the subsequent theoretical electron densities. The study revealed that electrostatic properties obtained from the multipolar models are significantly different from those obtained directly from the theoretical densities. The electrostatic properties of isolated molecules are reproduced better by multipolar models than the electrostatic properties of molecules in a crystal. Changes of electrostatic properties caused by perturbation of electron density due to the crystal environment are barely described by the multipolar model. As a consequence, the electrostatic properties obtained from multipolar models fitted to the perturbed theoretical densities derived either from cluster or periodic calculations do not differ much from those estimated from multipolar models fitted to densities of isolated molecules. The main reason for this seems to be related to an inadequate description of electron-density polarization in the vicinity of the nuclei by the multipolar model.


Bioorganic Chemistry | 2015

The influence of fluorine position on the properties of fluorobenzoxaboroles.

Agnieszka Adamczyk-Woźniak; Małgorzata K. Cabaj; Paulina M. Dominiak; Patrycja Gajowiec; Błażej Gierczyk; Jacek Lipok; Łukasz Popenda; Grzegorz Schroeder; Ewelina Tomecka; Piotr Urbański; Dorota Wieczorek; Andrzej Sporzyński

5-Fluoro-2,1-benzoxaborol-1(3H)-ol, a potent antifungal drug also known as Tavaborole or AN2690, has been compared with its three isomers in terms of its activity against several fungi as well as pKa and multinuclear NMR characterization. The molecular and crystal structure of 6-fluoro-2,1-benzoxaborol-1(3H)-ol was determined and compared with that of AN2690.


Chemistry: A European Journal | 2018

Quantum Crystallography: Current Developments and Future Perspectives

Alessandro Genoni; Lukáš Bučinský; Nicolas Claiser; Julia Contreras-García; Birger Dittrich; Paulina M. Dominiak; Enrique Espinosa; Carlo Gatti; Paolo Giannozzi; Jean-Michel Gillet; Dylan Jayatilaka; Piero Macchi; Anders Ø. Madsen; Lou Massa; Chérif F. Matta; Kenneth M. Merz; Philip N. H. Nakashima; Holger Ott; Ulf Ryde; Karlheinz Schwarz; Marek Sierka; Simon Grabowsky

Crystallography and quantum mechanics have always been tightly connected because reliable quantum mechanical models are needed to determine crystal structures. Due to this natural synergy, nowadays accurate distributions of electrons in space can be obtained from diffraction and scattering experiments. In the original definition of quantum crystallography (QCr) given by Massa, Karle and Huang, direct extraction of wavefunctions or density matrices from measured intensities of reflections or, conversely, ad hoc quantum mechanical calculations to enhance the accuracy of the crystallographic refinement are implicated. Nevertheless, many other active and emerging research areas involving quantum mechanics and scattering experiments are not covered by the original definition although they enable to observe and explain quantum phenomena as accurately and successfully as the original strategies. Therefore, we give an overview over current research that is related to a broader notion of QCr, and discuss options how QCr can evolve to become a complete and independent domain of natural sciences. The goal of this paper is to initiate discussions around QCr, but not to find a final definition of the field.


ChemPhysChem | 2016

A Universal and Straightforward Approach to Include Penetration Effects in Electrostatic Interaction Energy Estimation.

Sławomir A. Bojarowski; Prashant Kumar; Paulina M. Dominiak

To compensate for the lack of the explicit treatment of charge penetration in classical force fields, we propose a new charge-distribution model based on a promolecule augmented with point charges (aug-PROmol). It relies on a superposition of spherical atomic electron densities obtained for each chemical element from SCF energy optimized atomic orbitals. Atomic densities are further rescaled by partial point charges computed from fits to the molecular electrostatic potential. Aug-PROmol was tested on the S66 benchmark dataset extended to nonequilibrium geometries (J. Chem. Theory Comput., 2011, 7, 3466). The model does not need any additional parametrization other than point charges. Despite its simplicity, aug-PROmol approximates the electrostatic energy with good agreement (RMSE=0.76 kcal mol(-1) to DFT-SAPT with B3LYP/aug-cc-pVTZ).

Collaboration


Dive into the Paulina M. Dominiak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dylan Jayatilaka

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge