Pauline Chaste
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pauline Chaste.
Nature Genetics | 2007
Christelle M. Durand; Catalina Betancur; Tobias M. Boeckers; Juergen Bockmann; Pauline Chaste; Fabien Fauchereau; Gudrun Nygren; Maria Råstam; I. Carina Gillberg; Henrik Anckarsäter; Eili Sponheim; Hany Goubran-Botros; Richard Delorme; Nadia Chabane; Marie-Christine Mouren-Simeoni; Philippe de Mas; Eric Bieth; Bernadette Rogé; Delphine Héron; Lydie Burglen; Christopher Gillberg; Marion Leboyer; Thomas Bourgeron
SHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage–sensitive synaptic pathway that is involved in autism spectrum disorders.
BMC Psychiatry | 2009
Björn Hofvander; Richard Delorme; Pauline Chaste; Agneta Nydén; Elisabet Wentz; Ola Ståhlberg; Evelyn Herbrecht; Astrid Stopin; Henrik Anckarsäter; Christopher Gillberg; Maria Råstam; Marion Leboyer
BackgroundIndividuals with autism spectrum disorders (ASDs) often display symptoms from other diagnostic categories. Studies of clinical and psychosocial outcome in adult patients with ASDs without concomitant intellectual disability are few. The objective of this paper is to describe the clinical psychiatric presentation and important outcome measures of a large group of normal-intelligence adult patients with ASDs.MethodsAutistic symptomatology according to the DSM-IV-criteria and the Gillberg & Gillberg research criteria, patterns of comorbid psychopathology and psychosocial outcome were assessed in 122 consecutively referred adults with normal intelligence ASDs. The subjects consisted of 5 patients with autistic disorder (AD), 67 with Aspergers disorder (AS) and 50 with pervasive developmental disorder not otherwise specified (PDD NOS). This study group consists of subjects pooled from two studies with highly similar protocols, all seen on an outpatient basis by one of three clinicians.ResultsCore autistic symptoms were highly prevalent in all ASD subgroups. Though AD subjects had the most pervasive problems, restrictions in non-verbal communication were common across all three subgroups and, contrary to current DSM criteria, so were verbal communication deficits. Lifetime psychiatric axis I comorbidity was very common, most notably mood and anxiety disorders, but also ADHD and psychotic disorders. The frequency of these diagnoses did not differ between the ASD subgroups or between males and females. Antisocial personality disorder and substance abuse were more common in the PDD NOS group. Of all subjects, few led an independent life and very few had ever had a long-term relationship. Female subjects more often reported having been bullied at school than male subjects.ConclusionASDs are clinical syndromes characterized by impaired social interaction and non-verbal communication in adulthood as well as in childhood. They also carry a high risk for co-existing mental health problems from a broad spectrum of disorders and for unfavourable psychosocial life circumstances. For the next revision of DSM, our findings especially stress the importance of careful examination of the exclusion criterion for adult patients with ASDs.
Molecular Psychiatry | 2008
Jonas Melke; H Goubran Botros; Pauline Chaste; Catalina Betancur; Gudrun Nygren; Henrik Anckarsäter; Maria Råstam; Ola Ståhlberg; I. C. Gillberg; Richard Delorme; Nadia Chabane; M-C Mouren-Simeoni; Fabien Fauchereau; Christelle M. Durand; F Chevalier; X Drouot; Corinne Collet; J-M Launay; Marion Leboyer; Christopher Gillberg; Thomas Bourgeron
Melatonin is produced in the dark by the pineal gland and is a key regulator of circadian and seasonal rhythms. A low melatonin level has been reported in individuals with autism spectrum disorders (ASD), but the underlying cause of this deficit was unknown. The ASMT gene, encoding the last enzyme of melatonin synthesis, is located on the pseudo-autosomal region 1 of the sex chromosomes, deleted in several individuals with ASD. In this study, we sequenced all ASMT exons and promoters in individuals with ASD (n=250) and compared the allelic frequencies with controls (n=255). Non-conservative variations of ASMT were identified, including a splicing mutation present in two families with ASD, but not in controls. Two polymorphisms located in the promoter (rs4446909 and rs5989681) were more frequent in ASD compared to controls (P=0.0006) and were associated with a dramatic decrease in ASMT transcripts in blood cell lines (P=2 × 10−10). Biochemical analyses performed on blood platelets and/or cultured cells revealed a highly significant decrease in ASMT activity (P=2 × 10−12) and melatonin level (P=3 × 10−11) in individuals with ASD. These results indicate that a low melatonin level, caused by a primary deficit in ASMT activity, is a risk factor for ASD. They also support ASMT as a susceptibility gene for ASD and highlight the crucial role of melatonin in human cognition and behavior.
PLOS Genetics | 2012
Claire S. Leblond; Jutta Heinrich; Richard Delorme; Christian Proepper; Catalina Betancur; Guillaume Huguet; Marina Konyukh; Pauline Chaste; Elodie Ey; Maria Råstam; Henrik Anckarsäter; Gudrun Nygren; I. Carina Gillberg; Jonas Melke; Roberto Toro; Béatrice Regnault; Fabien Fauchereau; Oriane Mercati; Nathalie Lemière; David Skuse; Martin Poot; Richard Holt; Anthony P. Monaco; Irma Järvelä; Katri Kantojärvi; Raija Vanhala; Sarah Curran; David A. Collier; Patrick Bolton; Andreas G. Chiocchetti
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.
Trends in Genetics | 2010
Roberto Toro; Marina Konyukh; Richard Delorme; Claire S. Leblond; Pauline Chaste; Fabien Fauchereau; Mary Coleman; Marion Leboyer; Christopher Gillberg; Thomas Bourgeron
Autism spectrum disorders (ASD) are characterized by impairments in reciprocal social communication, and repetitive, stereotyped verbal and non-verbal behaviors. Genetic studies have provided a relatively large number of genes that constitute a comprehensive framework to better understand this complex and heterogeneous syndrome. Based on the most robust findings, three observations can be made. First, genetic contributions to ASD are highly heterogeneous and most probably involve a combination of alleles with low and high penetrance. Second, the majority of the mutations apparently affect a single allele, suggesting a key role for gene dosage in susceptibility to ASD. Finally, the broad expression and function of the causative genes suggest that alteration of synaptic homeostasis could be a common biological process associated with ASD. Understanding the mechanisms that regulate synaptic homeostasis should shed new light on the causes of ASD and could provide a means to modulate the severity of the symptoms.
Molecular Autism | 2012
Lambertus Klei; Stephan J. Sanders; Vanessa Hus; Jennifer K. Lowe; A. Jeremy Willsey; Daniel Moreno-De-Luca; Eric Fombonne; Daniel H. Geschwind; Dorothy E. Grice; David H. Ledbetter; Catherine Lord; Shrikant Mane; Christa Lese Martin; Donna M. Martin; Eric M. Morrow; Christopher A. Walsh; Nadine M. Melhem; Pauline Chaste; James S. Sutcliffe; Matthew W. State; Edwin H. Cook; Kathryn Roeder; Bernie Devlin
BackgroundAutism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals.MethodsBy using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status.ResultsBy analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating.ConclusionsOur results, when viewed in the context of results from genome-wide association studies, demonstrate that a myriad of common variants of very small effect impacts ASD liability.
American Journal of Medical Genetics | 2007
Joseph D. Buxbaum; Guiqing Cai; Pauline Chaste; Gudrun Nygren; Juliet Goldsmith; Jennifer Reichert; Henrik Anckarsäter; Maria Råstam; Christopher J. Smith; Jeremy M. Silverman; Eric Hollander; Marion Leboyer; Christopher Gillberg; Alain Verloes; Catalina Betancur
Mutations in the PTEN gene are associated with a broad spectrum of disorders, including Cowden syndrome (CS), Bannayan–Riley–Ruvalcaba syndrome, Proteus syndrome, and Lhermitte–Duclos disease. In addition, PTEN mutations have been described in a few patients with autism spectrum disorders (ASDs) and macrocephaly. In this study, we screened the PTEN gene for mutations and deletions in 88 patients with ASDs and macrocephaly (defined as ≥2 SD above the mean). Mutation analysis was performed by direct sequencing of all exons and flanking regions, as well as the promoter region. Dosage analysis of PTEN was carried out using multiplex ligation‐dependent probe amplification (MLPA). No partial or whole gene deletions were observed. We identified a de novo missense mutation (D326N) in a highly conserved amino acid in a 5‐year‐old boy with autism, mental retardation, language delay, extreme macrocephaly (+9.6 SD) and polydactyly of both feet. Polydactyly has previously been described in two patients with Lhermitte–Duclos disease and CS and is thus likely to be a rare sign of PTEN mutations. Our findings suggest that PTEN mutations are a relatively infrequent cause of ASDs with macrocephaly. Screening of PTEN mutations is warranted in patients with autism and pronounced macrocephaly, even in the absence of other features of PTEN‐related tumor syndromes.
American Journal of Medical Genetics | 2004
Frank Bellivier; Pauline Chaste; Alain Malafosse
Genes encoding proteins involved in serotonergic metabolism are major candidates in association studies of suicidal behavior. The tryptophan hydroxylase (TPH) gene, which codes for the rate‐limiting enzyme of serotonin biosynthesis, is a major candidate gene and has been extensively studied in association studies of suicidal behavior, providing conflicting results. It is difficult to interpret these conflicting results due to lack of power, ethnic heterogeneity, and variations in the sampling strategies (in particular for controls) and in the polymorphism of the TPH gene studied. Meta‐analyses can improve the statistical power for the analysis of the effects of candidate vulnerability factors. The analysis of the sources of heterogeneity that contribute to these conflicting results is an important step in the interpretation of these conflicting association results and in the interpretation of the results of a meta‐analysis. We selected all of the published association studies between the TPH gene polymorphism and suicidal behavior. Nine association studies between the A218C TPH polymorphism and suicidal behavior fulfilled the inclusion criteria. A significant association was observed between the A218C polymorphism and suicidal behavior using the fixed effect method (odds ratio (OR) = 1.62; 95% confidence interval (CI) = [1.26; 2.07]) and the random effect method (OR = 1.61; 95% CI = [1.11; 2.35]). The analysis of the sources of heterogeneity showed that two studies (one positive and one negative) significantly deviated from the calculated global effect. The meta‐analysis performed after removing those two studies also revealed a significant association between the TPH A218C polymorphism and suicidal behavior. Both analyses suggested that the A allele has a dose‐dependent effect on the risk of suicidal behavior.
Biological Psychiatry | 2009
Christel Depienne; Daniel Moreno-De-Luca; Delphine Héron; Delphine Bouteiller; Aurélie Gennetier; Richard Delorme; Pauline Chaste; Jean-Pierre Siffroi; Sandra Chantot-Bastaraud; Baya Benyahia; Oriane Trouillard; Gudrun Nygren; Svenny Kopp; Maria Johansson; Maria Råstam; Lydie Burglen; Eric LeGuern; Alain Verloes; Marion Leboyer; Alexis Brice; Christopher Gillberg; Catalina Betancur
BACKGROUND Maternally derived duplications of the 15q11-q13 region are the most frequently reported chromosomal aberrations in autism spectrum disorders (ASD). Prader-Willi and Angelman syndromes, caused by 15q11-q13 deletions or abnormal methylation of imprinted genes, are also associated with ASD. However, the prevalence of these disorders in ASD is unknown. The aim of this study was to assess the frequency of 15q11-q13 rearrangements in a large sample of patients ascertained for ASD. METHODS A total of 522 patients belonging to 430 families were screened for deletions, duplications, and methylation abnormalities involving 15q11-q13 with multiplex ligation-dependent probe amplification (MLPA). RESULTS We identified four patients with 15q11-q13 abnormalities: a supernumerary chromosome 15, a paternal interstitial duplication, and two subjects with Angelman syndrome, one with a maternal deletion and the other with a paternal uniparental disomy. CONCLUSIONS Our results show that abnormalities of the 15q11-q13 region are a significant cause of ASD, accounting for approximately 1% of cases. Maternal interstitial 15q11-q13 duplications, previously reported to be present in 1% of patients with ASD, were not detected in our sample. Although paternal duplications of chromosome 15 remain phenotypically silent in the majority of patients, they can give rise to developmental delay and ASD in some subjects, suggesting that paternally expressed genes in this region can contribute to ASD, albeit with reduced penetrance compared with maternal duplications. These findings indicate that patients with ASD should be routinely screened for 15q genomic imbalances and methylation abnormalities and that MLPA is a reliable, rapid, and cost-effective method to perform this screening.
PLOS ONE | 2010
Pauline Chaste; Nathalie Clement; Oriane Mercati; Jean-Luc Guillaume; Richard Delorme; Hany Goubran Botros; Cécile Pagan; Samuel Périvier; Isabelle Scheid; Gudrun Nygren; Henrik Anckarsäter; Maria Råstam; Ola Ståhlberg; Carina Gillberg; Emilie Serrano; Nathalie Lemière; Jean-Marie Launay; Marie Christine Mouren-Simeoni; Marion Leboyer; Christopher Gillberg; Ralf Jockers; Thomas Bourgeron
Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration of the melatonin pathway has been reported in circadian disorders, diabetes and autism spectrum disorders (ASD). However, very little is known about the genetic variability of melatonin receptors in humans. Here, we sequenced the melatonin receptor MTNR1A and MTNR1B, genes coding for MT1 and MT2 receptors, respectively, in a large panel of 941 individuals including 295 patients with ASD, 362 controls and 284 individuals from different ethnic backgrounds. We also sequenced GPR50, coding for the orphan melatonin-related receptor GPR50 in patients and controls. We identified six non-synonymous mutations for MTNR1A and ten for MTNR1B. The majority of these variations altered receptor function. Particularly interesting mutants are MT1-I49N, which is devoid of any melatonin binding and cell surface expression, and MT1-G166E and MT1-I212T, which showed severely impaired cell surface expression. Of note, several mutants possessed pathway-selective signaling properties, some preferentially inhibiting the adenylyl cyclase pathway, others preferentially activating the MAPK pathway. The prevalence of these deleterious mutations in cases and controls indicates that they do not represent major risk factor for ASD (MTNR1A case 3.6% vs controls 4.4%; MTNR1B case 4.7% vs 3% controls). Concerning GPR50, we detected a significant association between ASD and two variations, Δ502–505 and T532A, in affected males, but it did not hold up after Bonferonni correction for multiple testing. Our results represent the first functional ascertainment of melatonin receptors in humans and constitute a basis for future structure-function studies and for interpreting genetic data on the melatonin pathway in patients.