Paulo A.S. Mourão
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paulo A.S. Mourão.
Journal of Biological Chemistry | 2000
Wladimir R. L. Farias; Ana-Paula Valente; Mariana S. Pereira; Paulo A.S. Mourão
We have characterized the structure of a sulfatedd-galactan from the red algae Botryocladia occidentalis. The following repeating structure (-4-α-d-Galp-1→3-β-d-Galp-1→) was found for this polysaccharide, but with a variable sulfation pattern. Clearly one-third of the total α-units are 2,3-di-O-sulfated and another one-third are 2-O-sulfated. The algal sulfated d-galactan has a potent anticoagulant activity (similar potency as unfractionated heparin) due to enhanced inhibition of thrombin and factor Xa by antithrombin and/or heparin cofactor II. We also extended the experiments to several sulfated polysaccharides from marine invertebrates with simple structures, composed of a single repeating structure. A 2-O- or 3-O-sulfatedl-galactan (as well as a 2-O-sulfatedl-fucan) has a weak anticoagulant action when compared with the potent action of the algal sulfated d-galactan. Possibly, the addition of two sulfate esters to a single α-galactose residue has an “amplifying effect” on the anticoagulant action, which cannot be totally ascribed to the increased charge density of the polymer. These results indicate that the wide diversity of polysaccharides from marine alga and invertebrates is a useful tool to elucidate structure/anticoagulant activity relationships.
Glycobiology | 2008
Vitor H. Pomin; Paulo A.S. Mourão
Sulfated fucans and galactans are strongly anionic polysaccharides found in marine organisms. Their structures vary among species, but their major features are conserved among phyla. Sulfated fucans are found in marine brown algae and echinoderms, whereas sulfated galactans occur in red and green algae, marine angiosperms, tunicates (ascidians), and sea urchins. Polysaccharides with 3-linked, beta-galactose units are highly conserved in some taxonomic groups of marine organisms and show a strong tendency toward 4-sulfation in algae and marine angiosperms, and 2-sulfation in invertebrates. Marine algae mainly express sulfated polysaccharides with complex, heterogeneous structures, whereas marine invertebrates synthesize sulfated fucans and sulfated galactans with regular repetitive structures. These polysaccharides are structural components of the extracellular matrix. Sulfated fucans and galactans are involved in sea urchin fertilization acting as species-specific inducers of the sperm acrosome reaction. Because of this function the structural evolution of sulfated fucans could be a component in the speciation process. The algal and invertebrate polysaccharides are also potent anticoagulant agents of mammalian blood and represent a potential source of compounds for antithrombotic therapies.
Journal of Biological Chemistry | 1997
Ana-Paula Alves; Barbara Mulloy; José Antonio Picanço Diniz; Paulo A.S. Mourão
We have characterized the fine structure of sulfated polysaccharides from the egg jelly layer of three species of sea urchins and tested the ability of these purified polysaccharides to induce the acrosome reaction in spermatozoa. The sea urchin Echinometra lucunter contains a homopolymer of 2-sulfated, 3-linked α-L-galactan. The species Arbacia lixula and Lytechinus variegatus contain linear sulfated α-L-fucans with regular tetrasaccharide repeating units. Each of these sulfated polysaccharides induces the acrosome reaction in conspecific but not in heterospecific spermatozoa. These results demonstrate that species specificity of fertilization in sea urchins depends in part on the fine structure of egg jelly sulfated polysaccharide.
Trends in Cardiovascular Medicine | 1999
Paulo A.S. Mourão; Mariana S. Pereira
We describe a variety of sulfated polysaccharides with regular and well-defined structures which are useful tools for elucidating structure/biological function relationship. Several of these compounds have anticoagulant and antithrombotic activities. The most studied and promising polysaccharide is a fucosylated chondroitin sulfate, composed of a chondroitin sulfate-like backbone, substituted at position 3 of the beta-D-glucuronic acid with heavily sulfated fucose side chains. The anticoagulant activity of this polysaccharide is mediated by both antithrombin and heparin cofactor II; it has antithrombotic activity when targeted at the intrinsic coagulation pathway.
Journal of Biological Chemistry | 2007
Lubor Borsig; Lianchun Wang; Moisés C.M. Cavalcante; Larissa Cardilo-Reis; Paola L. Ferreira; Paulo A.S. Mourão; Jeffrey D. Esko; Mauro S. G. Pavão
Heparin is an excellent inhibitor of P- and L-selectin binding to the carbohydrate determinant, sialyl Lewisx. As a consequence of its anti-selectin activity, heparin attenuates metastasis and inflammation. Here we show that fucosylated chondroitin sulfate (FucCS), a polysaccharide isolated from sea cucumber composed of a chondroitin sulfate backbone substituted at the 3-position of the β-d-glucuronic acid residues with 2,4-disulfated α-l-fucopyranosyl branches, is a potent inhibitor of P- and L-selectin binding to immobilized sialyl Lewisx and LS180 carcinoma cell attachment to immobilized P- and L-selectins. Inhibition occurs in a concentration-dependent manner. Furthermore, FucCS was 4–8-fold more potent than heparin in the inhibition of the P- and L-selectin-sialyl Lewisx interactions. No inhibition of E-selectin was observed. FucCS also inhibited lung colonization by adenocarcinoma MC-38 cells in an experimental metastasis model in mice, as well as neutrophil recruitment in two models of inflammation (thioglycollate-induced peritonitis and lipopolysaccharide-induced lung inflammation). Inhibition occurred at a dose that produces no significant change in plasma activated partial thromboplastin time. Removal of the sulfated fucose branches on the FucCS abolished the inhibitory effect in vitro and in vivo. Overall, the results suggest that invertebrate FucCS may be a potential alternative to heparin for blocking metastasis and inflammatory reactions without the undesirable side effects of anticoagulant heparin.
Journal of Biological Chemistry | 2005
Hugo Alexandre Oliveira Rocha; Fábio A. Moraes; Edvaldo S. Trindade; Célia Regina C. Franco; Ricardo J. S. Torquato; Silvio S. Veiga; Ana Paula Valente; Paulo A.S. Mourão; Edda Lisboa Leite; Helena B. Nader; Carl P. Dietrich
The brown alga Spatoglossum schroederi contains three fractions of sulfated polysaccharides. One of them was purified by acetone fractionation, ion exchange, and molecular sieving chromatography. It has a molecular size of 21.5 kDa and contains fucose, xylose, galactose, and sulfate in a molar ratio of 1.0:0.5:2.0:2.0 and contains trace amounts of glucuronic acid. Chemical analyses, methylation studies, and NMR spectroscopy showed that the polysaccharide has a unique structure, composed of a central core formed mainly by 4-linked β-galactose units, partially sulfated at the 3-O position. Approximately 25% of these units contain branches of oligosaccharides (mostly tetrasaccharides) composed of 3-sulfated, 4-linked α-fucose and one or two nonsulfated, 4-linked β-xylose units at the reducing and nonreducing end, respectively. This sulfated galactofucan showed no anticoagulant activity on several “in vitro” assays. Nevertheless, it had a potent antithrombotic activity on an animal model of experimental venous thrombosis. This effect is time-dependent, reaching the maximum 8 h after its administration compared with the more transient action of heparin. The effect was not observed with the desulfated molecule. Furthermore, the sulfated galactofucan was 2-fold more potent than heparin in stimulating the synthesis of an antithrombotic heparan sulfate by endothelial cells. Again, this action was also abolished by desulfation of the polysaccharide. Because this sulfated galactofucan has no anticoagulant activity but strongly stimulates the synthesis of heparan sulfate by endothelial cells, we suggested that this last effect may be related to the “in vivo” antithrombotic activity of this polysaccharide. In this case the highly sulfated heparan sulfate produced by the endothelial cells is in fact the antithrombotic agent. Our results suggested that this sulfated galactofucan may have a potential application as an antithrombotic drug.
Arteriosclerosis, Thrombosis, and Vascular Biology | 1994
L E Cardoso; Paulo A.S. Mourão
The topographic distribution of atherosclerotic lesions is influenced by biochemical factors intrinsic to the arterial wall. In the present work we have investigated whether the composition/chemical structure of glycosaminoglycans constitutes one of these factors. Normal human arteries were obtained at necropsy, and in order of decreasing susceptibility to atherosclerosis, consisted of the abdominal and thoracic aortas and the iliac and pulmonary arteries. The results showed similar concentrations of total glycosaminoglycan and collagen. Of the glycosaminoglycans known to interact with low-density lipoprotein (LDL), dermatan sulfate was present in all arteries in comparable concentrations, but the aortas had a 30% higher content of chondroitin 4/6-sulfate, which in turn was slightly enriched in 6-sulfated disaccharide units. LDL-affinity chromatography with dermatan sulfate+chondroitin 4/6-sulfate fractions demonstrated that increasing affinity to LDL matched an increasing susceptibility to atherosclerosis. Analysis of glycosaminoglycans in the eluates indicated a positive correlation between affinity to LDL and increasing molecular weight and the existence of a fraction of glycosaminoglycans of high affinity to LDL in the aortas only. These results suggest that arterial glycosaminoglycans participate in the multifactorial mechanisms that modulate the differential localization of atherosclerotic lesions.
Carbohydrate Research | 1994
Ana-Cristina Ribeiro; Ricardo P. Vieira; Paulo A.S. Mourão; Barbara Mulloy
Abstract A purified sulfated α- l -fucan from the sea cucumber body wall was studied, before and after almost complete desulfation, using methylation analysis and NMR spectroscopy. NMR analysis indicates that 2,4-di- O -sulfo- l -fucopyranose and unsubstituted fucopyranose are present in equal proportions, and that 2- O -sulfo- l -fucopyranose is present in twice that proportion. There is some NMR evidence that a regular repeating sequence of four residues comprises most or all of the polysaccharide chain.
Journal of Biotechnology | 2000
Barbara Mulloy; Paulo A.S. Mourão; Elaine Gray
Sulphated polysaccharides have many biological functions, which depend on binding of highly specific carbohydrate structures to proteins. NMR spectroscopy is a technique capable of detailed structural elucidation of these polysaccharides, and can be used in applications ranging from routine analysis to research into covalent and conformational aspects of polysaccharide structure. This technique can be used to characterise sequence variations in heparin samples. The NMR-determined solution conformation of heparin has been used to predict binding sites on the surface of heparin-binding proteins. Sulphation patterns for dermatan sulphates of marine invertebrates have been determined. Their anticoagulant effects depend on an exact pattern of sulphate substitution. A small alteration in dermatan sulphate structure, from 4-O-sulphated to 6-O-sulphated galactosamine, leads to almost complete loss of anticoagulant activity in spite of an overall high level of sulphation. A fucosylated chondroitin sulphate isolated from sea cucumber has anticoagulant and antithrombotic activity depending on its sulphated fucose branches. The anticoagulant activity of algal fucans has been compared with that of regular, linear sulphated fucans from marine echinoderms; again high activity appears to correlate with the presence of sulphated fucose branches.
Thrombosis and Haemostasis | 2008
Roberto J. C. Fonseca; Stephan-Nicollas M. C. G. Oliveira; Fabio R. Melo; Maria Gonçalves Pereira; Norma Maria Barros Benevides; Paulo A.S. Mourão
We compared sulfated galactans (SGs) from two species of red algae using specific coagulation assays and experimental models of thrombosis. These polysaccharides have an identical saccharide structure and the same size chain, but with slight differences in their sulfation patterns. As a consequence of these differences, the two SGs differ in their anticoagulant and venous antithrombotic activities. SG from G. crinale exhibits procoagulant and prothrombotic effects in low doses (up to 1.0 mg/kg body weight), but in high doses (>1.0 mg/kg) this polysaccharide inhibits both venous and arterial thrombosis in rats and prolongs ex-vivo recalcification time. In contrast, SG from B. occidentalis is a very potent anticoagulant and antithrombotic compound in low doses (up to 0.5 mg/kg body weight), inhibiting venous experimental thrombosis and prolonging ex-vivo recalcification time, but these effects are reverted in high doses. Only at high doses (>1.0 mg/kg) the SG from B. occidentalis inhibits arterial thrombosis. As with heparin, SG from G. crinale does not activate factor XII, while the polysaccharide from B. occidentalis activates factor XII in high concentrations, which could account for its procoagulant effect at high doses on rats. Both SGs do not modify bleeding time in rats. These results indicate that slight differences in the proportions and/or distribution of sulfated residues along the galactan chain may be critical for the interaction between proteases, inhibitors and activators of the coagulation system, resulting in a distinct pattern in anti- and procoagulant activities and in the antithrombotic action.