Paulo Afonso Nogueira
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paulo Afonso Nogueira.
The Journal of Infectious Diseases | 2010
Bruna O. Carvalho; Stefanie C. P. Lopes; Paulo Afonso Nogueira; Patrícia Puccinelli Orlandi; Daniel Y. Bargieri; Yara C. Blanco; Ronei Luciano Mamoni; Juliana A. Leite; Mauricio M. Rodrigues; Irene S. Soares; Tatiane R. Oliveira; Gerhard Wunderlich; Marcus V. G. Lacerda; Hernando A. del Portillo; Maria Ophelia G. De Araújo; Bruce Russell; Rossarin Suwanarusk; Georges Snounou; Laurent Rénia; Fabio T. M. Costa
BACKGROUND Plasmodium falciparum and Plasmodium vivax are responsible for most of the global burden of malaria. Although the accentuated pathogenicity of P. falciparum occurs because of sequestration of the mature erythrocytic forms in the microvasculature, this phenomenon has not yet been noted in P. vivax. The increasing number of severe manifestations of P. vivax infections, similar to those observed for severe falciparum malaria, suggests that key pathogenic mechanisms (eg, cytoadherence) might be shared by the 2 parasites. METHODS Mature P. vivax-infected erythrocytes (Pv-iEs) were isolated from blood samples collected from 34 infected patients. Pv-iEs enriched on Percoll gradients were used in cytoadhesion assays with human lung endothelial cells, Saimiri brain endothelial cells, and placental cryosections. RESULTS Pv-iEs were able to cytoadhere under static and flow conditions to cells expressing endothelial receptors known to mediate the cytoadhesion of P. falciparum. Although Pv-iE cytoadhesion levels were 10-fold lower than those observed for P. falciparum-infected erythrocytes, the strength of the interaction was similar. Cytoadhesion of Pv-iEs was in part mediated by VIR proteins, encoded by P. vivax variant genes (vir), given that specific antisera inhibited the Pv-iE-endothelial cell interaction. CONCLUSIONS These observations prompt a modification of the current paradigms of the pathogenesis of malaria and clear the way to investigate the pathophysiology of P. vivax infections.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Bernardo S. Franklin; Peggy Parroche; Marco Antǒnio Ataíde; Fanny N. Lauw; Catherine Ropert; Rosane B. de Oliveira; Dhelio Batista Pereira; Mauro Shugiro Tada; Paulo Afonso Nogueira; Luiz Hildebrando Pereira da Silva; Harry Björkbacka; Douglas T. Golenbock; Ricardo T. Gazzinelli
Malaria-induced sepsis is associated with an intense proinflammatory cytokinemia for which the underlying mechanisms are poorly understood. It has been demonstrated that experimental infection of humans with Plasmodium falciparum primes Toll-like receptor (TLR)-mediated proinflammatory responses. Nevertheless, the relevance of this phenomenon during natural infection and, more importantly, the mechanisms by which malaria mediates TLR hyperresponsiveness are unclear. Here we show that TLR responses are boosted in febrile patients during natural infection with P. falciparum. Microarray analyses demonstrated that an extraordinary percentage of the up-regulated genes, including genes involving TLR signaling, had sites for IFN-inducible transcription factors. To further define the mechanism involved in malaria-mediated “priming,” we infected mice with Plasmodium chabaudi. The human data were remarkably predictive of what we observed in the rodent malaria model. Malaria-induced priming of TLR responses correlated with increased expression of TLR mRNA in a TLR9-, MyD88-, and IFNγ-dependent manner. Acutely infected WT mice were highly susceptible to LPS-induced lethality while TLR9−/−, IL12−/− and to a greater extent, IFNγ−/− mice were protected. Our data provide unprecedented evidence that TLR9 and MyD88 are essential to initiate IL12 and IFNγ responses and favor host hyperresponsiveness to TLR agonists resulting in overproduction of proinflammatory cytokines and the sepsis-like symptoms of acute malaria.
Brazilian Journal of Medical and Biological Research | 2006
Patrícia Puccinelli Orlandi; Gleiciene Félix Magalhães; N.B. Matos; Thayná Silva; M. Penatti; Paulo Afonso Nogueira; L.H. Pereira da Silva
In the present study, 470 children less than 72 months of age and presenting acute diarrhea were examined to identify associated enteropathogenic agents. Viruses were the pathogens most frequently found in stools of infants with diarrhea, including 111 cases of rotavirus (23.6% of the total diarrhea cases) and 30 cases of adenovirus (6.3%). The second group was diarrheogenic Escherichia coli (86 cases, 18.2%), followed by Salmonella sp (44 cases, 9.3%) and Shigella sp (24 cases, 5.1%). Using the PCR technique to differentiate the pathogenic categories of E. coli, it was possible to identify 29 cases (6.1%) of enteropathogenic E. coli (EPEC). Of these, 10 (2.1%) were typical EPEC and 19 (4.0%) atypical EPEC. In addition, there were 26 cases (5.5%) of enteroaggregative E. coli, 21 cases (4.4%) of enterotoxigenic E. coli, 7 cases (1.4%) of enteroinvasive E. coli (EIEC), and 3 cases (0.6%) of enterohemorrhagic E. coli. When comparing the frequencies of diarrheogenic E. coli, EPEC was the only category for which significant differences were found between diarrhea and control groups. A low frequency of EIEC was found, thus EIEC cannot be considered to be a potential etiology agent of diarrhea. Simultaneous infections with two pathogens were found in 39 diarrhea cases but not in controls, suggesting associations among potential enteropathogens in the etiology of diarrhea. The frequent association of diarrheogenic E. coli strains was significantly higher than the probability of their random association, suggesting the presence of facilitating factor(s).
Infection and Immunity | 2006
Paulo Afonso Nogueira; Fabiana P. Alves; Carmen Fernandez-Becerra; Oliver Pein; Neida Rodrigues Santos; Luiz Hildebrando Pereira da Silva; Erney Plessman Camargo; Hernando A. del Portillo
ABSTRACT Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. The occurrence of clinical protection in P. vivax malaria in Brazil was first reported among residents of the riverine community of Portuchuelo, in Rondônia, western Amazon. We thus analyzed immune sera from this same human population to determine if naturally acquired humoral immune responses against the merozoite surface protein 1 of P. vivax, PvMSP1, could be associated with reduced risk of infection and/or clinical protection. Our results demonstrated that this association could be established with anti-PvMSP1 antibodies predominantly of the immunoglobulin G3 subclass directed against the N terminus but not against the C terminus, in spite of the latter being more immunogenic and capable of natural boosting. This is the first report of a prospective study of P. vivax malaria demonstrating an association of reduced risk of infection and clinical protection with antibodies against an antigen of this parasite.
Antimicrobial Agents and Chemotherapy | 2009
Stefanie C. P. Lopes; Yara C. Blanco; Giselle Z. Justo; Paulo Afonso Nogueira; Francisco L. S. Rodrigues; Uta Goelnitz; Gerhard Wunderlich; Gustavo Facchini; Marcelo Brocchi; Nelson Durán; Fabio T. M. Costa
ABSTRACT Violacein is a violet pigment extracted from the gram-negative bacterium Chromobacterium violaceum. It presents bactericidal, tumoricidal, trypanocidal, and antileishmanial activities. We show that micromolar concentrations efficiently killed chloroquine-sensitive and -resistant Plasmodium falciparum strains in vitro; inhibited parasitemia in vivo, even after parasite establishment; and protected Plasmodium chabaudi chabaudi-infected mice from a lethal challenge.
PLOS ONE | 2013
Helena Cristina Cardoso Coelho; Stefanie C. P. Lopes; João Paulo Diniz Pimentel; Paulo Afonso Nogueira; Fabio T. M. Costa; André Siqueira; Gisely Cardoso de Melo; Wuelton Marcelo Monteiro; Adriana Malheiro; Marcus V. G. Lacerda
Background Although thrombocytopenia is a hematological disorder commonly reported in malarial patients, its mechanisms are still poorly understood, with only a few studies focusing on the role of platelets phagocytosis. Methods and Findings Thirty-five malaria vivax patients and eight healthy volunteers (HV) were enrolled in the study. Among vivax malaria patients, thrombocytopenia (<150,000 platelets/µL) was found in 62.9% (22/35). Mean platelet volume (MPV) was higher in thrombocytopenic patients as compared to non- thrombocytopenic patients (p = 0.017) and a negative correlation was found between platelet count and MPV (r = −0.483; p = 0.003). Platelets from HV or patients were labeled with 5-chloromethyl fluorescein diacetate (CMFDA), incubated with human monocytic cell line (THP-1) and platelet phagocytosis index was analyzed by flow cytometry. The phagocytosis index was higher in thrombocytopenic patients compared to non-thrombocytopenic patients (p = 0.042) and HV (p = 0.048). A negative correlation was observed between platelet count and phagocytosis index (r = −0.402; p = 0.016). Platelet activation was assessed measuring the expression of P-selectin (CD62-P) in platelets’ surface by flow cytometry. No significant difference was found in the expression of P-selectin between thrombocytopenic patients and HV (p = 0.092). After evaluating the cytokine profile (IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ and IL-17) in the patients’ sera, levels of IL-6, IL-10 and IFN-γ were elevated in malaria patients compared to HV. Moreover, IL-6 and IL-10 values were higher in thrombocytopenic patients than non-thrombocytopenic ones (p = 0.044 and p = 0.017, respectively. In contrast, TNF-α levels were not different between the three groups, but a positive correlation was found between TNF-α and phagocytosis index (r = −0.305; p = 0.037). Conclusion/Significance Collectively, our findings indicate that platelet phagocytosis may contribute to thrombocytopenia found in vivax malaria. Finally, we believe that this study opens new avenues to explore the mechanisms involved in platelet dysfunction, commonly found in vivax malaria patients.
The Journal of Infectious Diseases | 2014
Stefanie C. P. Lopes; Letusa Albrecht; Bruna O. Carvalho; André Siqueira; Richard Thomson-Luque; Paulo Afonso Nogueira; Carmen Fernandez-Becerra; Hernando A. del Portillo; Bruce Russell; Laurent Rénia; Marcus V. G. Lacerda; Fabio T. M. Costa
There is now a growing body of evidence that challenges the current view that Plasmodium vivax-infected erythrocyte (Pv-iE) are unable to sequester. Here we used ex vivo adhesion assays with Pv-iE before and after maturation to demonstrate a higher binding potential of schizonts compared to other asexual stages. These experimental results are correlated with our observations in a panel of 50 vivax malaria patients where schizonts were completely absent in 27 isolates, and few schizonts were observed in the remaining patients. These observations prompt a paradigm shift in P. vivax biology and open avenues to investigate the role of Pv-iE sequestration.
Malaria Journal | 2013
Fernanda G. Versiani; Maria E. Almeida; Gisely Cardoso de Melo; Francivaldo Ol Versiani; Patrícia Puccinelli Orlandi; Luis André Mariúba; Leidiane Amorim Soares; Luciana P Souza; Antônio Alcirley da Silva Balieiro; Wuelton Marcelo Monteiro; Fabio Tm Costa; Hernando A. del Portillo; Marcus Vg Lacerda; Paulo Afonso Nogueira
BackgroundPlasmodium vivax has the potential to infect 2.85 billion individuals worldwide. Nevertheless, the limited number of studies investigating the immune status of individuals living in malaria-endemic areas, as well as the lack of reports investigating serological markers associated with clinical protection, has hampered development of vaccines for P. vivax. It was previously demonstrated that naturally total IgG against the N-terminus of P. vivax merozoite surface protein 1 (Pv-MSP1) was associated with reduced risk of malarial infection.MethodsImmune response against Pv-MSP1 (N-terminus) of 313 residents of the Rio Pardo rural settlement (Amazonas State, Brazil) was evaluated in a cross-sectional and longitudinal follow up over two months (on site) wherein gold standard diagnosis by thick blood smear and rRNA gene-based nested real-time PCR were used to discriminate symptomless Plasmodium vivax-infected individuals who did not develop clinical symptoms during a 2-months from those uninfected ones or who have had acute malaria. The acquisition of antibodies against Pv-MSP1 was also evaluated as survival analysis by prospective study over a year collecting information of new malaria infections in surveillance database.ResultsThe majority of P. vivax-infected individuals (52-67%) showed immune recognition of the N-terminus of Pv-MSP1. Interesting data on infected individuals who have not developed symptoms, total IgG levels against the N-terminus Pv-MSP1 were age-dependent and the IgG3 levels were significantly higher than levels of subjects had acute malaria or those uninfected ones. The total IgG anti ICB2-5 was detected to be an important factor of protection against new malaria vivax attacks in survival analysis in a prospective survey (p = 0.029).ConclusionsThe study findings illustrate the importance of IgG3 associated to 2-months of symptomless in P. vivax infected individuals and open perspectives for the rationale of malaria vaccine designs capable to sustain high levels of IgG3 against polymorphic malaria antigens.
Tropical Medicine & International Health | 2012
Flora S. Kano; Bruno A. M. Sanchez; Taís Nóbrega de Sousa; Michaelis L Tang; Jéssica Saliba; Fernando José Moreira de Oliveira; Paulo Afonso Nogueira; Alessandra Queiroga Gonçalves; Cor Jesus Fernandes Fontes; Irene S. Soares; Cristiana F. A. Brito; Roberto Sena Rocha; Luzia H. Carvalho
Objective To investigate risk factors associated with the acquisition of antibodies against Plasmodium vivax Duffy binding protein (PvDBP) – a leading malaria vaccine candidate – in a well‐consolidated agricultural settlement of the Brazilian Amazon Region and to determine the sequence diversity of the PvDBP ligand domain (DBPII) within the local malaria parasite population.
BioMed Research International | 2014
Carolinie Batista Nobre da Cruz; Maria Carolina Scheffer de Souza; Paula Taquita Serra; Ivanildes Santos; Antônio Alcirley da Silva Balieiro; Fábio Alessandro Pieri; Paulo Afonso Nogueira; Patrícia Puccinelli Orlandi
Shigellosis is a global human health problem and the incidence is highest among children. In the present work, main Shigella virulence genes was examined by PCR and compared to symptoms of pediatric shigellosis. Thirty Shigella isolates were identified from an etiologic study at which 1,339 children ranging 0–10 years old were enrolled. S. flexneri was the most frequent species reaching 60.0% of isolates, 22.2% were S. sonnei, and 6.6% were both S. dysenteriae and S. boydii. All Shigella infected children had diarrhea, but not all were accompanied by others symptoms of bacillary dysentery. Among major virulence genes, the PCR typing revealed ipaBCD was present in all isolates, followed by IpaH7.8, set-1A, set-1B, sen/ospD3, virF, and invE. The pathogenic potential of the ShET-1B subunit was observed in relation to dehydration (P < 0.001) and ShET-2 related to the intestinal injury (P = 0.033) evidenced by the presence of bloody diarrhea. Our results show associations among symptoms of shigellosis and virulence genes of clinical isolates of Shigella spp.