Paulo Emílio Corrêa Leite
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paulo Emílio Corrêa Leite.
Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2017
Andrew R. Collins; Annangi Balasubramanyam; Laura Rubio; Ricard Marcos; Marco Dorn; Carolin Merker; Irina Estrela-Lopis; Mihaela R. Cimpan; Mohamed Ibrahim; Emil Cimpan; Melanie Ostermann; Alexander Sauter; Naouale El Yamani; Sergey Shaposhnikov; Sylvie Chevillard; Vincent Paget; Romain Grall; Jozo Delic; Felipe Goñi de-Cerio; Blanca Suarez-Merino; Valérie Fessard; Kevin Hogeveen; Lise Maria Fjellsbø; Elise Runden Pran; Tana Brzicova; Jan Topinka; Maria João Silva; Paulo Emílio Corrêa Leite; Ar Ribeiro; Jm Granjeiro
With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety—preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read‐across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter‐experimental variation, and makes substantial savings in time and cost. HTS/HCA approaches facilitate the classification of key biological indicators of NM‐cell interactions. Validation of in vitro HTS tests is required, taking account of relevance to in vivo results. HTS/HCA approaches are needed to assess dose‐ and time‐dependent toxicity, allowing prediction of in vivo adverse effects. Several HTS/HCA methods are being validated and applied for NM testing in the FP7 project NANoREG, including Label‐free cellular screening of NM uptake, HCA, High throughput flow cytometry, Impedance‐based monitoring, Multiplex analysis of secreted products, and genotoxicity methods—namely High throughput comet assay, High throughput in vitro micronucleus assay, and γH2AX assay. There are several technical challenges with HTS/HCA for NM testing, as toxicity screening needs to be coupled with characterization of NMs in exposure medium prior to the test; possible interference of NMs with HTS/HCA techniques is another concern. Advantages and challenges of HTS/HCA approaches in NM safety are discussed. WIREs Nanomed Nanobiotechnol 2017, 9:e1413. doi: 10.1002/wnan.1413 For further resources related to this article, please visit the WIREs website.
Regulatory Toxicology and Pharmacology | 2016
Susan Dekkers; Agnes G. Oomen; Eric A.J. Bleeker; Rob J. Vandebriel; C. Micheletti; Joan Cabellos; Gemma Janer; N. Fuentes; Socorro Vázquez-Campos; Teresa Borges; Maria João Silva; Adriele Prina-Mello; Dania Movia; Fabrice Nesslany; Ar Ribeiro; Paulo Emílio Corrêa Leite; Monique Groenewold; Flemming R. Cassee; Adriënne J.A.M. Sips; Aart Dijkzeul; T. van Teunenbroek; Susan W.P. Wijnhoven
In the current paper, a new strategy for risk assessment of nanomaterials is described, which builds upon previous project outcomes and is developed within the FP7 NANoREG project. NANoREG has the aim to develop, for the long term, new testing strategies adapted to a high number of nanomaterials where many factors can affect their environmental and health impact. In the proposed risk assessment strategy, approaches for (Quantitative) Structure Activity Relationships ((Q)SARs), grouping and read-across are integrated and expanded to guide the user how to prioritise those nanomaterial applications that may lead to high risks for human health. Furthermore, those aspects of exposure, kinetics and hazard assessment that are most likely to be influenced by the nanospecific properties of the material under assessment are identified. These aspects are summarised in six elements, which play a key role in the strategy: exposure potential, dissolution, nanomaterial transformation, accumulation, genotoxicity and immunotoxicity. With the current approach it is possible to identify those situations where the use of nanospecific grouping, read-across and (Q)SAR tools is likely to become feasible in the future, and to point towards the generation of the type of data that is needed for scientific justification, which may lead to regulatory acceptance of nanospecific applications of these tools.
Journal of Cellular Physiology | 2016
Mariana Rodrigues Pereira; Paulo Emílio Corrêa Leite
Production of inflammatory cytokines plays important roles in the response against tissue injury and in host defense. Alterations in the production of inflammatory cytokines may cause local or systemic inflammatory imbalance, culminating in organ failure or lethal systemic inflammation. The cholinergic anti‐inflammatory pathway has been implicated as an important mechanism to regulate inflammation of targeted tissue. In this review, we discuss important advances, conflicting and controversial findings regarding the involvement of parasympathetic vagus and sympathetic splenic nerve through acetylcholine (ACh) release and α7 nicotinic acetylcholine receptor (nAChRα7) activation in the spleen. In addition, we address the involvement of cholinergic control of inflammation in other organs innerved by the vagus nerve such as gut, liver, kidney and lung, and independent of parasympathetic innervations such as skin and skeletal muscle. Then, other structures and mechanisms independent of vagus or splenic nerve may be involved in this process, such as local cells and motor neurons producing ACh. Altogether, the convergence of these findings may contribute to current anti‐inflammatory strategies involving selective drug‐targeting and electrical nerve stimulation. J. Cell. Physiol. 231: 1862–1869, 2016.
Journal of Neuroimmunology | 2010
Paulo Emílio Corrêa Leite; Jussara Lagrota-Candido; Louise Moraes; Livia D'Elia; Douglas Florindo Pinheiro; Rafael Ferreira da Silva; Edna N. Yamasaki; Thereza Quirico-Santos
Mdx mice develop an inflammatory myopathy characterized at different ages by myonecrosis with scattered inflammatory infiltrates followed by muscular regeneration and later persistent fibrosis. This work aimed to verify the putative anti-inflammatory role of nicotinic acetylcholine receptor (nAChR) in the mdx muscular lesion. Mitigation of myonecrosis and decreased TNFα production were accompanied by increased numbers of F4/80 macrophages expressing nAChRα7. In vivo treatment with nicotine attenuated muscular inflammation characterized by reduced metalloprotease MMP-9 activity, TNFα and NFkB content and increased muscular regeneration. Our data indicate that nAChR activation influences local inflammatory responses in the muscular lesion of mdx mice.
Toxicology in Vitro | 2015
Paulo Emílio Corrêa Leite; Mariana Rodrigues Pereira; José Mauro Granjeiro
Nanostructured materials are widely used in many applications of industry and biomedical fields. Nanoparticles emerges as potential pharmacological carriers that can be applied in the regenerative medicine, diagnosis and drug delivery. Different types of nanoparticles exhibit ability to cross the brain blood barrier (BBB) and accumulate in several brain areas. Then, efforts have been done to develop safer nanocarrier systems to treat disorders of central nervous system (CNS). However, several in vitro and in vivo studies demonstrated that nanoparticles of different materials exhibit a wide range of neurotoxic effects inducing neuroinflammation and cognitive impairment. For this reason, polymeric nanoparticles arise as a promisor alternative due to their biocompatible and biodegradable properties. After an overview of CNS location and neurotoxic effects of translocated nanoparticles, this review addresses the use of polymeric nanoparticles to the treatment of neuroinfectious diseases, as acquired immunodeficiency syndrome (AIDS) and meningitis.
Toxicology in Vitro | 2015
Paulo Emílio Corrêa Leite; Mariana Rodrigues Pereira; Carlos Antonio do Nascimento Santos; Andrea Porto Carreiro Campos; Ticiana Mota Esteves; José Mauro Granjeiro
Gold nanoparticles (AuNP) have been widely used for many applications, including as biological carriers. A better understanding concerning AuNP safety on muscle cells is crucial, since it could be a potential tool in the nanomedicine field. Here, we describe the impact of polyethylene glycol-coated gold nanoparticles (PEG-AuNP) interaction with differentiated skeletal muscle C2C12 cells on cell viability, mitochondria function, cell signaling related to survival, cytokine levels and susceptibility to apoptosis. Intracellular localization of 4.5 nm PEG-AuNP diameter size was evidenced by STEM-in-SEM in myotube cells. Methods for cytotoxicity analysis showed that PEG-AuNP did not affect cell viability, but intracellular ATP levels and mitochondrial membrane potential increased. Phosphorylation of ERK was not altered but p-AKT levels reduced (p<0.01). Pre-treatment of cells with PEG-AuNP followed by staurosporine induction increased the caspases-3/7 activity. Indeed, cytokines analysis revealed a sharp increase of IFN-γ and TGF-β1 levels after PEG-AuNP treatment, suggesting that inflammatory and fibrotic phenotypes process were activated. These data demonstrate that PEG-AuNP affect the myotube physiology leading these cells to be more susceptible to death stimuli in the presence of staurosporine. Altogether, these results present evidence that PEG-AuNP affect the susceptibility to apoptosis of muscle cells, contributing to development of safer strategies for intramuscular delivery.
Archives of Toxicology | 2017
Jean-Pascal Piret; Olesja Bondarenko; Matthew Boyles; Martin Himly; Ar Ribeiro; Federico Benetti; Caroline Smal; Braulio Lima; Annegret Potthoff; Monica Simion; Elise Dumortier; Paulo Emílio Corrêa Leite; Luciene Bottentuit Balottin; José Mauro Granjeiro; Angela Ivask; Anne Kahru; Isabella Radauer-Preiml; Ulrike Tischler; Albert Duschl; Christelle Saout; Sergio Anguissola; Andrea Haase; An Jacobs; Inge Nelissen; Superb K. Misra; Olivier Toussaint
The rapid development of nanotechnologies and increased production and use of nanomaterials raise concerns about their potential toxic effects for human health and environment. To evaluate the biological effects of nanomaterials, a set of reliable and reproducible methods and development of standard operating procedures (SOPs) is required. In the framework of the European FP7 NanoValid project, three different cell viability assays (MTS, ATP content, and caspase-3/7 activity) with different readouts (absorbance, luminescence and fluorescence) and two immune assays (ELISA of pro-inflammatory cytokines IL1-β and TNF-α) were evaluated by inter-laboratory comparison. The aim was to determine the suitability and reliability of these assays for nanosafety assessment. Studies on silver and copper oxide nanoparticles (NPs) were performed, and SOPs for particle handling, cell culture, and in vitro assays were established or adapted. These SOPs give precise descriptions of assay procedures, cell culture/seeding conditions, NPs/positive control preparation and dilutions, experimental well plate preparation, and evaluation of NPs interference. The following conclusions can be highlighted from the pan-European inter-laboratory studies: Testing of NPs interference with the toxicity assays should always be conducted. Interference tests should be designed as close as possible to the cell exposure conditions. ATP and MTS assays gave consistent toxicity results with low inter-laboratory variability using Ag and CuO NPs and different cell lines and therefore, could be recommended for further validation and standardization. High inter-laboratory variability was observed for Caspase 3/7 assay and ELISA for IL1-β and TNF-α measurements.
Stem Cells International | 2017
Mellannie P. Stuart; Renata Matsui; Matheus F. S. Santos; Isis Côrtes; Mayra S. Azevedo; Karina R. da Silva; Anderson Beatrici; Paulo Emílio Corrêa Leite; Priscila Falagan-Lotsch; José Mauro Granjeiro; Vladimir Mironov; Leandra Santos Baptista
The scaffold-free tissue engineering using spheroids is pointed out as an approach for optimizing the delivery system of cartilage construct. In this study, we aimed to evaluate the micromolded nonadhesive hydrogel (MicroTissues®) for spheroid compaction (2-day culture) and spontaneous chondrogenesis (21-day culture) using cartilage progenitors cells (CPCs) from human nasal septum without chondrogenic stimulus. CPC spheroids showed diameter stability (486 μm ± 65), high percentage of viable cells (88.1 ± 2.1), and low percentage of apoptotic cells (2.3%). After spheroid compaction, the synthesis of TGF-β1, TGF-β2, and TGF-β3 was significantly higher compared to monolayer (p < 0.005). Biomechanical assay revealed that the maximum forces applied to spheroids after chondrogenesis were 2.6 times higher than for those cultured for 2 days. After spontaneous chondrogenesis, CPC spheroids were entirely positive for N-cadherin, collagen type II and type VI, and aggrecan and chondroitin sulfate. Comparing to monolayer, the expression of SOX5 and SOX6 genes analyzed by qPCR was significantly upregulated (p < 0.01). Finally, we observed the capacity of CPC spheroids starting to fuse. To the best of our knowledge, this is the first time in the scientific literature that human CPC spheroids were formed by micromolded nonadhesive hydrogel, achieving a successful scaffold-free cartilage engineering without chondrogenic stimulus (low cost).
Mediators of Inflammation | 2018
Geórgia do Nascimento Saraiva; Natalia Fonseca do Rosário; Thalia Medeiros; Paulo Emílio Corrêa Leite; Gilmar de Souza Lacerda; Thaís Guaraná de Andrade; Elzinandes Leal de Azeredo; Petronela Ancuta; Jorge Reis Almeida; Analúcia Rampazzo Xavier; Andrea Alice da Silva
This study aimed at analyzing circulating levels of inflammatory and profibrogenic cytokines in patients with hepatitis C virus (HCV) chronic infection undergoing therapy with direct-acting antiviral agents (DAA) and correlating these immune biomarkers with liver disease status. We studied 88 Brazilian monoinfected chronic hepatitis C patients receiving interferon- (IFN-) free sofosbuvir-based regimens for 12 or 24 weeks, followed-up before therapy initiation and three months after the end of treatment. Liver disease was determined by transient elastography, in addition to APRI and FIB-4 indexes. Analysis of 30 immune mediators was carried out by multiplex or enzymatic immunoassays. Sustained virological response rate was 98.9%. Serum levels of cytokines were increased in HCV-infected patients when compared to control group. CCL-2, CCL-3, CCL-4, CXCL-8, CXCL-10, IL-1β, IL-15, IFN-γ, IL-4, IL-10, TGF-β, FGFb, and PAI-1 decreased significantly after antiviral therapy, reaching values similar to noninfected controls. TGF-β and suPAR levels were associated with fibrosis/cirrhosis. Also, we observed amelioration in hepatic parameters after DAA treatment. Together, our results suggest that viral control induced by IFN-free DAA therapy restores inflammatory mediators in association with improvement in liver function.
Journal of Biomedical Materials Research Part A | 2018
Emanuelle Stellet Lourenço; Carlos Fernando de Almeida Barros Mourão; Paulo Emílio Corrêa Leite; José Mauro Granjeiro; Mônica Diuana Calasans-Maia; Gutemberg Gomes Alves
Platelet-rich fibrin membranes are biomaterials widely used for therapeutic purposes, and canonically produced through the processing of peripheral blood with fixed-angle rotor centrifuges. In this work, we evaluate the in vitro stability and release of cytokines and growth factors when these biomaterials are produced with a horizontal swing-out clinical centrifuge. Membranes produced from the blood of 14 donors were morphologically evaluated by scanning electron microscopy and fluorescence microscopy, and their stability was assessed by photographic recording after incubation in culture medium for up to 28 days. The release of 27 cytokines and growth factors was monitored for three weeks through a multiparametric immunoassay. The fibrin membranes presented complex three-dimensional structure with a high density of nucleated cells. A large release of growth factors [platelet derived growth factor, fibroblastic growth factor (bFGF), and vascular endothelial growth factor] was detected in the first 24 h, followed by time-dependent decay, maintaining significant concentrations after three weeks. Both anti-inflammatory and pro-inflammatory cytokines presented different release peaks, maintaining high rates of elution for up to 21 days. Chemokines of relevance in tissue repair [RANTES, granulocyte colony-stimulating factor (G-CSF)] were also produced in large quantities throughout the experimental period. The present results demonstrate that blood-derived fibrin membranes with high structural stability and cell content can be generated by horizontal centrifugation, being able of a prolonged production/release of growth factors and pro- and anti-inflammatory cytokines.