Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulo H. Rodrigues is active.

Publication


Featured researches published by Paulo H. Rodrigues.


Autophagy | 2006

Autophagy: A Highway for Porphyromonas gingivalis in Endothelial Cells

Myriam Bélanger; Paulo H. Rodrigues; William A. Dunn; Ann Progulske-Fox

P. gingivalis, an important periodontal pathogen associated with adult periodontitis and a likely contributing factor to atherosclerosis and cardiovascular disease, traffics in endothelial cells via the autophagic pathway. Initially, P. gingivalis rapidly adheres to the host cell surface followed by internalization via lipid rafts and incorporation of the bacterium into early phagosomes. P. gingivalis activates cellular autophagy to provide a replicative niche while suppressing apoptosis. The replicating vacuole contains host proteins delivered by autophagy that are used by this asaccharolytic pathogen to survive and replicate within the host cell. When autophagy is suppressed by 3-methyladenine or wortmannin, internalized P. gingivalis transits to the phagolysosome where it is destroyed and degraded. Therefore, the survival of P. gingivalis depends upon the activation of autophagy and survival of the endothelial host cell, but the mechanism by which P. gingivalis accomplishes this remains unclear.


Oral Microbiology and Immunology | 2009

Invasion of human coronary artery endothelial cells by Streptococcus mutans OMZ175

Jacqueline Abranches; Lin Zeng; Myriam Bélanger; Paulo H. Rodrigues; Patricia J. Simpson-Haidaris; Debra Akin; William A. Dunn; Ann Progulske-Fox; Robert A. Burne

INTRODUCTION Dissemination of oral bacteria into the bloodstream has been associated with eating, oral hygiene, and dental procedures; including tooth extraction, endodontic treatment, and periodontal surgery. Recently, studies identified Streptococcus mutans, the primary etiological agent of dental caries, as the most prevalent bacterial species found in clinical samples from patients who underwent heart valve and atheromatous plaque surgery. METHODS By using antibiotic protection assays, we tested the capacity of 14 strains of S. mutans to invade primary human coronary artery endothelial cells (HCAEC). RESULTS Serotype e strain B14 and serotype f strain OMZ175 of S. mutans were able to efficiently invade HCAEC. Among the tested strains, serotype f S. mutans OMZ175 was the most invasive, whereas strains of serotype c S. mutans, the most prevalent serotype in dental plaque, were not invasive. Based on its high invasion rate, we further investigated the invasive properties of serotype f OMZ175. Using transmission electron microscopy and antibiotic protection assays we demonstrate that S. mutans OMZ175 is capable of attaching to the HCAEC surface, entering the cells and surviving in HCAEC for at least 29 h. DISCUSSION Our findings highlight a potential role for S. mutans in the pathogenesis of certain cardiovascular diseases.


Microbiology | 2008

Porphyromonas gingivalis htrA is involved in cellular invasion and in vivo survival

Lihui Yuan; Paulo H. Rodrigues; Myriam Bélanger; William A. Dunn; Ann Progulske-Fox

HtrA is a heat-stress protein that functions both as a chaperone and as a serine protease. HtrA has been shown in several organisms to be involved in responses to stressful environmental conditions and involvement of HtrA in virulence has been reported in pathogenic species. A Porphyromonas gingivalis htrA mutant demonstrated no significant difference to the W83 parent strain when subjected to high temperature and pH values from 3 to 11. However, the htrA mutant showed increased sensitivity to H(2)O(2). Cell invasion assays indicated that the total interaction (adherence) with KB cells, human coronary artery endothelial cells and gingival epithelial cells (GEC) was the same for both the wild-type and the htrA mutant. However, the htrA mutant showed increased invasion in KB cells and GEC. Microarray experiments indicated that a total of 253 genes were differentially regulated in the htrA mutant, including a group of stress-related genes, which might be responsible for the observed decreased resistance to H(2)O(2). In animal experiments, a competition assay showed that the htrA mutant did not survive as well as the wild-type. In another in vivo assay, fewer mice infected with the htrA mutant died than mice infected with W83, suggesting that the htrA gene is virulence-related. These data indicate that the htrA gene in P. gingivalis does not relate to stress conditions such as high temperature and pH, but rather to H(2)O(2) stress. The htrA gene also appears to be important for virulence and survival in in vivo animal models.


Infection and Immunity | 2005

Gene Expression Profile Analysis of Porphyromonas gingivalis during Invasion of Human Coronary Artery Endothelial Cells

Paulo H. Rodrigues; Ann Progulske-Fox

ABSTRACT Microarrays were used to identify genes of Porphyromonas gingivalis W83 differentially expressed during invasion of primary human coronary artery endothelial cells. Analyses of microarray images indicated that 62 genes were differentially regulated. Of these, 11 genes were up-regulated and 51 were down-regulated. The differential expression of 16 selected genes was confirmed by real-time PCR.


Current protocols in microbiology | 2007

Genetic Manipulation of Porphyromonas gingivalis

Myriam Bélanger; Paulo H. Rodrigues; Ann Progulske-Fox

Porphyromonas gingivalis, an oral anaerobic bacterium, is an important etiological agent of periodontal disease and may contribute to cardiovascular disease, preterm birth, and diabetes as well. Therefore, genetic studies are of crucial importance in investigating molecular mechanisms of P. gingivalis virulence. Although molecular genetic tools have been available for many bacterial species for some time, genetic manipulations of Porphyromonas species were not developed until more recently and remain limited. In this unit, current molecular genetic approaches for mutant construction in P. gingivalis using the suicide vector pPR‐UF1 and the transposon Tn4351 are described, as are protocols for performing electroporation and conjugation. Furthermore, a technique to restore the wild‐type phenotype of the mutant by complementation using vector pT‐COW is provided. Finally, a description of a noninvasive reporter system allowing the study of gene expression and regulation in P. gingivalis completes this unit.


PLOS ONE | 2012

Porphyromonas gingivalis Strain Specific Interactions with Human Coronary Artery Endothelial Cells: A Comparative Study

Paulo H. Rodrigues; Leticia Reyes; Amandeep S. Chadda; Myriam Bélanger; Shannon M. Wallet; Debra Akin; William A. Dunn; Ann Progulske-Fox

Both epidemiologic and experimental findings suggest that infection with Porphyromonas gingivalis exacerbates progression of atherosclerosis. As P. gingivalis exhibits significant strain variation, it is reasonable that different strains possess different capabilities and/or mechanisms by which they promote atherosclerosis. Using P. gingivalis strains that have been previously evaluated in the ApoE null atherosclerosis model, we assessed the ability of W83, A7436, 381, and 33277 to adhere, invade, and persist in human coronary artery endothelial (HCAE) cells. W83 and 381 displayed an equivalent ability to adhere to HCAE cells, which was significantly greater than both A7436 and 33277 (P<0.01). W83, 381, and 33277 were more invasive than A7436 (P<0.0001). However, only W83 and A7436 were able to remain viable up to 48 hours in HCAE cell cultures, whereas 381 was cleared by 48 hours and 33277 was cleared by 24 hours. These differences in persistence were in part due to strain specific differences in intracellular trafficking. Both W83 and 381 trafficked through the autophagic pathway, but not A7436 or 33277. Internalized 381 was the only strain that was dependent upon the autophagic pathway for its survival. Finally, we assessed the efficacy of these strains to activate HCAE cells as defined by production of IL-6, IL-8, IL-12p40, MCP-1, RANTES, TNF-α, and soluble adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin). Only moderate inflammation was observed in cells infected with either W83 or A7436, whereas cells infected with 381 exhibited the most profound inflammation, followed by cells infected with 33277. These results demonstrate that virulence mechanisms among different P. gingivalis strains are varied and that pathogenic mechanisms identified for one strain are not necessarily applicable to other strains.


Frontiers in Bioscience | 2008

Porphyromonas gingivalis and the autophagic pathway: an innate immune interaction?

Paulo H. Rodrigues; Myriam Bélanger; William A. Dunn; Ann Progulske-Fox

Autophagy is a mechanism used to maintain several intracellular functions essential to eukaryotic cells. Recently, a role for autophagy in innate and adaptive immunity has also been established including the elimination of invading bacteria. Although some intracellular pathogens are killed by autophagy, several others subvert autophagy to the pathogens benefit for survival and replication. Porphyromonas gingivalis, an important periodontal pathogen, has been shown to stimulate autophagy in endothelial cells and to use the autophagic pathway to its advantage. In human coronary artery endothelial cells (HCAEC), P. gingivalis localizes within autophagosomes. After intracellular uptake, P. gingivalis transits from early autophagosomes to late autophagosomes and prevents the formation of autolysosomes, either by delaying the autophagosome-lysosome fusion or by redirecting the normal autophagic trafficking. In addition, P. gingivalis was also found to stimulate autophagy in human aortic endothelial cells (HAEC) since co-localization of LC3-II, an autophagosome marker, with P. gingivalis was observed. The trafficking of P. gingivalis into the autophagic pathway appears to be dependent upon the host cell type. Survival of P. gingivalis through the subversion of the host autophagic pathway can be considered a bacterial strategy to evade the innate immune system and persist in the host.


PLOS ONE | 2013

Deletion of Lipoprotein PG0717 in Porphyromonas gingivalis W83 Reduces Gingipain Activity and Alters Trafficking in and Response by Host Cells

Leticia Reyes; Eileen Eiler-McManis; Paulo H. Rodrigues; Amandeep S. Chadda; Shannon M. Wallet; Myriam Bélanger; Amanda G. Barrett; Sophie Alvarez; Debra Akin; William A. Dunn; Ann Progulske-Fox

P. gingivalis (Pg), a causative agent of chronic generalized periodontitis, has been implicated in promoting cardiovascular disease. Expression of lipoprotein gene PG0717 of Pg strain W83 was found to be transiently upregulated during invasion of human coronary artery endothelial cells (HCAEC), suggesting this protein may be involved in virulence. We characterized the virulence phenotype of a PG0717 deletion mutant of pg W83. There were no differences in the ability of W83Δ717 to adhere and invade HCAEC. However, the increased proportion of internalized W83 at 24 hours post-inoculation was not observed with W83∆717. Deletion of PG0717 also impaired the ability of W83 to usurp the autophagic pathway in HCAEC and to induce autophagy in Saos-2 sarcoma cells. HCAEC infected with W83Δ717 also secreted significantly greater amounts of MCP-1, IL-8, IL-6, GM-CSF, and soluble ICAM-1, VCAM-1, and E-selectin when compared to W83. Further characterization of W83Δ717 revealed that neither capsule nor lipid A structure was affected by deletion of PG0717. Interestingly, the activity of both arginine (Rgp) and lysine (Kgp) gingipains was reduced in whole-cell extracts and culture supernatant of W83Δ717. RT-PCR revealed a corresponding decrease in transcription of rgpB but not rgpA or kgp. Quantitative proteome studies of the two strains revealed that both RgpA and RgpB, along with putative virulence factors peptidylarginine deiminase and Clp protease were significantly decreased in the W83Δ717. Our results suggest that PG0717 has pleiotropic effects on W83 that affect microbial induced manipulation of host responses important for microbial clearance and infection control.


Anaerobe | 2010

Genetic analysis of mobile tetQ elements in oral Prevotella species.

Gena D. Tribble; John J. Garza; Victor L. Yeung; Todd Rigney; Doan Hieu V Dao; Paulo H. Rodrigues; Clay Walker; C J Smith

Prevotella species are members of the bacterial oral flora and are opportunistic pathogens in polymicrobial infections of soft tissues. Antibiotic resistance to tetracyclines is common in these bacteria, and the gene encoding this resistance has been previously identified as tetQ. The tetQ gene is also found on conjugative transposons in the intestinal Bacteroides species; whether these related bacteria have transmitted tetQ to Prevotella is unknown. In this study, we describe our genetic analysis of mobile tetQ elements in oral Prevotella species. Our results indicate that the mobile elements encoding tetQ in oral species are distinct from those found in the Bacteroides. The intestinal bacteria may act as a reservoir for the tetQ gene, but Prevotella has incorporated this gene into an IS21-family transposon. This transposon is present in Prevotella species from more than one geographical location, implying that the mechanism of tetQ spread between oral Prevotella species is highly conserved.


Journal of Dental Research | 2009

Analysis of a Band 7/MEC-2 Family Gene of Porphyromonas gingivalis

S. Walters; Paulo H. Rodrigues; Myriam Bélanger; Joan Whitlock; Ann Progulske-Fox

In vivo-induced antigen technology has previously been used to identify 115 genes induced in Porphyromonas gingivalis W83 during human infection. The aim of this study was to determine if one of these genes, PG1334, was important for the virulence of P. gingivalis. Analysis of plaque samples from persons with periodontitis revealed that PG1334 was expressed in 88.0% of diseased sites, compared with 42.1% of healthy sites, even though P. gingivalis was detected in equal numbers from both sites. A mutant of PG1334 was found to adhere to and to invade better than the parent strain, but did not persist as well in human coronary artery endothelial cells. Additionally, the mutant did not persist as well in a mouse abscess model. This gene appears to be important for the virulence of P. gingivalis, both in vivo and in vitro.

Collaboration


Dive into the Paulo H. Rodrigues's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Eustáquio da Costa

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Luiz de Macêdo Farias

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge