Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulo H. Verardi is active.

Publication


Featured researches published by Paulo H. Verardi.


Journal of Virology | 2001

Vaccinia Virus Vectors with an Inactivated Gamma Interferon Receptor Homolog Gene (B8R) Are Attenuated In Vivo without a Concomitant Reduction in Immunogenicity

Paulo H. Verardi; Leslie A. Jones; Fatema H. Aziz; Shabbir Ahmad; Tilahun Yilma

ABSTRACT The vaccinia virus (VV) B8R gene encodes a secreted protein with homology to the gamma interferon (IFN-γ) receptor. In vitro, the B8R protein binds to and neutralizes the antiviral activity of several species of IFN-γ, including human and rat IFN-γ; it does not, however, bind significantly to murine IFN-γ. Here we report on the construction and characterization of recombinant VVs (rVVs) lacking the B8R gene. While the deletion of this gene had no effect on virus replication in vitro, rVVs lacking the B8R gene were attenuated for mice. There was a significant decrease in weight loss and mortality in normal mice, and nude mice survived significantly longer than did controls inoculated with parental virus. This is a surprising result considering the minimal binding of the B8R protein to murine IFN-γ and its failure to block the antiviral activity of this cytokine in vitro. Such reduction in virulence could not be determined in rats, since they are considerably more resistant to VV infection than are mice. Finally, deletion of the B8R gene had no detectable effects on humoral immune responses. Mice and rats vaccinated with the rVVs showed identical humoral responses to both homologous and heterologous genes expressed by VV. This study demonstrates that the deletion of the VV B8R gene leads to enhanced safety without a concomitant reduction in immunogenicity.


Journal of Virology | 2004

Induction of Potent Humoral and Cell-Mediated Immune Responses by Attenuated Vaccinia Virus Vectors with Deleted Serpin Genes

Fatema A. Legrand; Paulo H. Verardi; Leslie A. Jones; Kenneth S. Chan; Yue Peng; Tilahun Yilma

ABSTRACT Vaccinia virus (VV) has been effectively utilized as a live vaccine against smallpox as well as a vector for vaccine development and immunotherapy. Increasingly there is a need for a new generation of highly attenuated and efficacious VV vaccines, especially in light of the AIDS pandemic and the threat of global bioterrorism. We therefore developed recombinant VV (rVV) vaccines that are significantly attenuated and yet elicit potent humoral and cell-mediated immune responses. B13R (SPI-2) and B22R (SPI-1) are two VV immunomodulating genes with sequence homology to serine protease inhibitors (serpins) that possess antiapoptotic and anti-inflammatory properties. We constructed and characterized rVVs that have the B13R or B22R gene insertionally inactivated (vΔB13R and vΔB22R) and coexpress the vesicular stomatitis virus glycoprotein (v50ΔB13R and v50ΔB22R). Virulence studies with immunocompromised BALB/cBy nude mice indicated that B13R or B22R gene deletion decreases viral replication and significantly extends time of survival. Viral pathogenesis studies in immunocompetent CB6F1 mice further demonstrated that B13R or B22R gene inactivation diminishes VV virulence, as measured by decreased levels of weight loss and limited viral spread. Finally, rVVs with B13R and B22R deleted elicited potent humoral, T-helper, and cytotoxic T-cell immune responses, revealing that the observed attenuation did not reduce immunogenicity. Therefore, inactivation of immunomodulating genes such as B13R or B22R represents a general method for enhancing the safety of rVV vaccines while maintaining a high level of immunogenicity. Such rVVs could serve as effective vectors for vaccine development and immunotherapy.


Human Vaccines & Immunotherapeutics | 2012

A vaccinia virus renaissance: new vaccine and immunotherapeutic uses after smallpox eradication.

Paulo H. Verardi; Allison Titong; Caitlin J. Hagen

In 1796, Edward Jenner introduced the concept of vaccination with cowpox virus, an Orthopoxvirus within the family Poxviridae that elicits cross protective immunity against related orthopoxviruses, including smallpox virus (variola virus). Over time, vaccinia virus (VACV) replaced cowpox virus as the smallpox vaccine, and vaccination efforts eventually led to the successful global eradication of smallpox in 1979. VACV has many characteristics that make it an excellent vaccine and that were crucial for the successful eradication of smallpox, including (1) its exceptional thermal stability (a very important but uncommon characteristic in live vaccines), (2) its ability to elicit strong humoral and cell-mediated immune responses, (3) the fact that it is easy to propagate, and (4) that it is not oncogenic, given that VACV replication occurs exclusively within the host cell cytoplasm and there is no evidence that the viral genome integrates into the host genome. Since the eradication of smallpox, VACV has experienced a renaissance of interest as a viral vector for the development of recombinant vaccines, immunotherapies, and oncolytic therapies, as well as the development of next-generation smallpox vaccines. This revival is mainly due to the successful use and extensive characterization of VACV as a vaccine during the smallpox eradication campaign, along with the ability to genetically manipulate its large dsDNA genome while retaining infectivity and immunogenicity, its wide mammalian host range, and its natural tropism for tumor cells that allows its use as an oncolytic vector. This review provides an overview of new uses of VACV that are currently being explored for the development of vaccines, immunotherapeutics, and oncolytic virotherapies.


Journal of Leukocyte Biology | 2013

Human TLR8 is activated upon recognition of Borrelia burgdorferi RNA in the phagosome of human monocytes

Jorge L. Cervantes; Carson J. La Vake; Bennett Weinerman; Stephanie Luu; Caitlin O'Connell; Paulo H. Verardi; Juan C. Salazar

Phagocytosed Borrelia burgdorferi (Bb), the Lyme disease spirochete, induces a robust and complex innate immune response in human monocytes, in which TLR8 cooperates with TLR2 in the induction of NF‐κB‐mediated cytokine production, whereas TLR8 is solely responsible for transcription of IFN‐β through IRF7. We now establish the role of Bb RNA in TLR8‐mediated induction of IFN‐β. First, using TLR2‐transfected HEK.293 cells, which were unable to phagocytose intact Bb, we observed TLR2 activation by lipoprotein‐rich borrelial lysates and TLR2 synthetic ligands but not in response to live spirochetes. Purified Bb RNA, but not borrelial DNA, triggered TLR8 activation. Neither of these 2 ligands induced activation of TLR7. Using purified human monocytes we then show that phagocytosed live Bb, as well as equivalent amounts of borrelial RNA delivered into the phagosome by polyethylenimine (PEI), induces transcription of IFN‐β and secretion of TNF‐α. The cytokine response to purified Bb RNA was markedly impaired in human monocytes naturally deficient in IRAK‐4 and in cells with knockdown TLR8 expression by small interfering RNA. Using confocal microscopy we provide evidence that TLR8 colocalizes with internalized Bb RNA in both early (EEA1) and late endosomes (LAMP1). Live bacterial RNA staining indicates that spirochetal RNA does not transfer from the phagosome into the cytosol. Using fluorescent dextran particles we show that phagosomal integrity in Bb‐infected monocytes is not affected. We demonstrate, for the first time, that Bb RNA is a TLR8 ligand in human monocytes and that transcription of IFN‐β in response to the spirochete is induced from within the phagosomal vacuole through the TLR8‐MyD88 pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Recombinant Rift Valley fever vaccines induce protective levels of antibody in baboons and resistance to lethal challenge in mice

James F. Papin; Paulo H. Verardi; Leslie A. Jones; Francisco Monge-Navarro; Aaron C. Brault; Melissa N. Worthy; Alexander N. Freiberg; Tilahun Yilma

Rift Valley fever (RVF) is a zoonotic disease endemic in Africa and the Arabian Peninsula caused by the highly infectious Rift Valley fever virus (RVFV) that can be lethal to humans and animals and results in major losses in the livestock industry. RVF is exotic to the United States; however, mosquito species native to this region can serve as biological vectors for the virus. Thus, accidental or malicious introduction of this virus could result in RVFV becoming endemic in North America. Such an event would likely lead to significant morbidity and mortality in humans, and devastating economic effects on the livestock industry. Currently, there are no licensed vaccines for RVF that are both safe and efficacious. To address this issue, we developed two recombinant RVFV vaccines using vaccinia virus (VACV) as a vector for use in livestock. The first vaccine, vCOGnGc, was attenuated by the deletion of a VACV gene encoding an IFN-γ binding protein, insertional inactivation of the thymidine kinase gene, and expression of RVFV glycoproteins, Gn and Gc. The second vaccine, vCOGnGcγ, is identical to the first and also expresses the human IFN-γ gene to enhance safety. Both vaccines are extremely safe; neither resulted in weight loss nor death in severe combined immunodeficient mice, and pock lesions were smaller in baboons compared with the controls. Furthermore, both vaccines induced protective levels of antibody titers in vaccinated mice and baboons. Mice were protected from lethal RVFV challenge. Thus, we have developed two safe and efficacious recombinant vaccines for RVF.


Journal of Virology | 2002

Long-term sterilizing immunity to rinderpest in cattle vaccinated with a recombinant vaccinia virus expressing high levels of the fusion and hemagglutinin glycoproteins

Paulo H. Verardi; Fatema H. Aziz; Shabbir Ahmad; Leslie A. Jones; Berhanu Beyene; Rosemary N. Ngotho; Henry M. Wamwayi; Mebratu G. Yesus; Berhe G. Egziabher; Tilahun Yilma

ABSTRACT Rinderpest is an acute and highly contagious viral disease of ruminants, often resulting in greater than 90% mortality. We have constructed a recombinant vaccinia virus vaccine (v2RVFH) that expresses both the fusion (F) and hemagglutinin (H) genes of rinderpest virus (RPV) under strong synthetic vaccinia virus promoters. v2RVFH-infected cells express high levels of the F and H glycoproteins and show extensive syncytium formation. Cattle vaccinated intramuscularly with as little as 103 PFU of v2RVFH and challenged 1 month later with a lethal dose of RPV were completely protected from clinical disease; the 50% protective dose was determined to be 102 PFU. Animals vaccinated with v2RVFH did not develop pock lesions and did not transmit the recombinant vaccinia virus to contact animals. Intramuscular vaccination of cattle with 108 PFU of v2RVFH provided long-term sterilizing immunity against rinderpest. In addition to being highly safe and efficacious, v2RVFH is a heat-stable, inexpensive, and easily administered vaccine that allows the serological differentiation between vaccinated and naturally infected animals. Consequently, mass vaccination of cattle with v2RVFH could eradicate rinderpest.


Journal of Virology | 2009

Incorporation of CD40 Ligand into the Envelope of Pseudotyped Single-Cycle Simian Immunodeficiency Viruses Enhances Immunogenicity

Fan Ching Lin; Yue Peng; Leslie A. Jones; Paulo H. Verardi; Tilahun Yilma

ABSTRACT A vaccine for the prevention of human immunodeficiency virus (HIV) infection is desperately needed to control the AIDS pandemic. To address this problem, we developed vesicular stomatitis virus glycoprotein-pseudotyped replication-defective simian immunodeficiency viruses (dSIVs) as an AIDS vaccine strategy. The dSIVs retain characteristics of a live attenuated virus without the drawbacks of potential virulence caused by replicating virus. To improve vaccine immunogenicity, we incorporated CD40 ligand (CD40L) into the dSIV envelope. CD40L is one of the most potent stimuli for dendritic cell (DC) maturation and activation. Binding of CD40L to its receptor upregulates expression of major histocompatibility complex class I, class II, and costimulatory molecules on DCs and increases production of proinflammatory cytokines and chemokines, especially interleukin 12 (IL-12). This cytokine polarizes CD4+ T cells to Th1-type immune responses. DC activation and mixed lymphocyte reaction (MLR) studies were performed to evaluate the immunogenicity of CD40L-dSIV in vitro. Expression levels of CD80, CD86, HLA-DR, and CD54 on DCs transduced with the dSIV incorporating CD40L (CD40L-dSIV) were significantly higher than on those transduced with dSIV. Moreover, CD40L-dSIV-transduced DCs expressed up to 10-fold more IL-12 than dSIV-transduced DCs. CD40L-dSIV-transduced DCs enhanced proliferation and gamma interferon secretion by naive T cells in an MLR. In addition, CD40L-dSIV-immunized mice exhibited stronger humoral and cell-mediated immune responses than dSIV-vaccinated animals. The results show that incorporating CD40L into the dSIV envelope significantly enhances immunogenicity. As a result, CD40L-dSIVs can be strong candidates for development of a safe and highly immunogenic AIDS vaccine.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics

Patricia Grigg; Allison Titong; Leslie A. Jones; Tilahun Yilma; Paulo H. Verardi

Significance Replication-competent Vaccinia virus (VACV) vectors are widely used in the development of vaccines and therapeutics to control infectious diseases, cancer, and even fertility; however, as with all live vaccines, there are safety concerns. In this study, we developed a safety mechanism for VACV based on the conditional expression of a protective gene (IFN-γ) under a tightly controlled tetracycline-inducible promoter. We showed that immunodeficient mice are protected from a lethal VACV infection when treated with tetracyclines. This strategy has the potential to allow treatment of any complications that may result from VACV replication to be as simple as standard antibiotic regimens. Such “SMART” VACV vectors have broad applications in the fields of vaccinology and cancer therapy. Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.


Journal of Virology | 2007

Pseudotyped Single-Cycle Simian Immunodeficiency Viruses Expressing Gamma Interferon Augment T-Cell Priming Responses In Vitro

Yue Peng; Fan Ching Lin; Paulo H. Verardi; Leslie A. Jones; Michael B. McChesney; Tilahun Yilma

ABSTRACT To increase the safety and efficacy of human immunodeficiency virus vaccines, several groups have conducted studies using the macaque model with single-cycle replicating simian immunodeficiency viruses (SIVs). However, these constructs had poor or diminished efficacy compared to live attenuated vaccines. We previously showed that immunization of macaques with live attenuated SIV with a deletion in the nef gene and expressing gamma interferon (IFN-γ) results in significantly enhanced safety and efficacy. To further enhance safety, we constructed and characterized single-cycle SIVs, pseudotyped with the glycoprotein of vesicular stomatitis virus, expressing different levels of macaque IFN-γ. Expression of IFN-γ did not alter the infectivity or antigenicity of pseudotyped SIV. The transduction of dendritic cells (DCs) by IFN-γ-expressing particles resulted in the up-regulation of costimulatory and major histocompatibility complex molecules. Furthermore, T cells primed with DCs transduced by SIV particles expressing high levels of IFN-γ and then stimulated with SIV induced significantly higher numbers of spot-forming cells in an enzyme-linked immunospot assay than did T cells primed with DCs transduced with SIV particles lacking the cytokine. In conclusion, we demonstrated that the transduction of DCs in vitro with pseudotyped single-cycle SIVs expressing IFN-γ increased DC activation and augmented T-cell priming activity.


PLOS ONE | 2013

Use of a Recombinant Vaccinia Virus Expressing Interferon Gamma for Post-Exposure Protection against Vaccinia and Ectromelia Viruses

Susan A. Holechek; Karen L. Denzler; Michael C. Heck; Jill Schriewer; R. Mark L. Buller; Fatema A. Legrand; Paulo H. Verardi; Leslie A. Jones; Tilahun Yilma; Bertram L. Jacobs

Post-exposure vaccination with vaccinia virus (VACV) has been suggested to be effective in minimizing death if administered within four days of smallpox exposure. While there is anecdotal evidence for efficacy of post-exposure vaccination this has not been definitively studied in humans. In this study, we analyzed post-exposure prophylaxis using several attenuated recombinant VACV in a mouse model. A recombinant VACV expressing murine interferon gamma (IFN-γ) was most effective for post-exposure protection of mice infected with VACV and ectromelia virus (ECTV). Untreated animals infected with VACV exhibited severe weight loss and morbidity leading to 100% mortality by 8 to 10 days post-infection. Animals treated one day post-infection had milder symptoms, decreased weight loss and morbidity, and 100% survival. Treatment on days 2 or 3 post-infection resulted in 40% and 20% survival, respectively. Similar results were seen in ECTV-infected mice. Despite the differences in survival rates in the VACV model, the viral load was similar in both treated and untreated mice while treated mice displayed a high level of IFN-γ in the serum. These results suggest that protection provided by IFN-γ expressed by VACV may be mediated by its immunoregulatory activities rather than its antiviral effects. These results highlight the importance of IFN-γ as a modulator of the immune response for post-exposure prophylaxis and could be used potentially as another post-exposure prophylaxis tool to prevent morbidity following infection with smallpox and other orthopoxviruses.

Collaboration


Dive into the Paulo H. Verardi's collaboration.

Top Co-Authors

Avatar

Tilahun Yilma

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yue Peng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allison Titong

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Shabbir Ahmad

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Ching Lin

University of California

View shared research outputs
Top Co-Authors

Avatar

Fatema H. Aziz

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge