Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulo J. Gavaia is active.

Publication


Featured researches published by Paulo J. Gavaia.


Aquaculture | 2002

Osteological development and abnormalities of the vertebral column and caudal skeleton in larval and juvenile stages of hatchery-reared Senegal sole (Solea senegalensis)

Paulo J. Gavaia; Maria Teresa Dinis; M. L. Cancela

The Senegal sole is a species recently adapted to aquaculture for which little information on larval development is available. This study was designed to describe normal skeletal development and the occurrence of skeletal malformations in Senegal sole reared in captivity. Eggs were collected from natural spawning, incubated until hatching and larvae reared to the juvenile stage in a closed recirculating system. Samples were collected throughout development at regular intervals from hatching to fully formed juveniles. Specimens were stained with alcian blue and alizarin red and observed for skeletal development and detection of anomalies. A high number of malformations were detected, both in the caudal complex and the vertebral column. About 44% of the individuals observed showed at least one malformation and the highest occurrence of deformities was observed in the caudal region and in the vertebral column. Accordingly, 28% of the total deformities identified in this study were detected at those sites and in adjacent arches and spines. The causes were not identified in this study, but the high incidence of malformations may reflect culture problems due to rearing and/or feeding conditions that affect skeletal development.


Biotechnic & Histochemistry | 2000

Detection of Mineralized Structures in Early Stages of Development of Marine Teleostei Using a Modified Alcian Blue-Alizarin Red Double Staining Technique for Bone and Cartilage

Paulo J. Gavaia; Carmen Sarasquete; M. Leonor Cancela

We have developed a procedure for staining cartilage and bone in fish larvae as small as 2 mm (notochord length), for which standard alcian blue/alizarin red procedures did not give positive and/or consistent results. Small calcified structures only 100–200 ixm in length can be clearly visualized. The method is suitable for both onto-genic studies during early stages of skeletal development in most marine fishes (e.g., Sporus aurata L., Solea senegalensis Kaup), whose larvae at hatching are often only a few millimeters long and for detecting skeletal abnormalities in small larvae. This procedure can also be used for specimens that have been preserved in 100% ethanol for up to two years.


The Journal of Experimental Biology | 2007

Oligopeptide transporter PepT1 in Atlantic cod (Gadus morhua L.): cloning, tissue expression and comparative aspects.

Ivar Rønnestad; Paulo J. Gavaia; Carla S. B. Viegas; Tiziano Verri; Alessandro Romano; Tom O. Nilsen; Ann-Elise Olderbakk Jordal; Yuko Kamisaka; M. L. Cancela

SUMMARY A novel full-length cDNA that encodes for the Atlantic cod (Gadus morhua L.) PepT1-type oligopeptide transporter has been cloned. This cDNA (named codPepT1) was 2838 bp long, with an open reading frame of 2190 bp encoding a putative protein of 729 amino acids. Comparison of the predicted Atlantic cod PepT1 protein with zebrafish, bird and mammalian orthologs allowed detection of many structural features that are highly conserved among all the vertebrate proteins analysed, including (1) a larger than expected area of hydrophobic amino acids in close proximity to the N terminus; (2) a single highly conserved cAMP/cGMP-dependent protein kinase phosphorylation motif; (3) a large N-glycosylation-rich region within the large extracellular loop; and (4) a conserved and previously undescribed stretch of 8–12 amino acid residues within the large extracellular loop. Expression analysis at the mRNA level indicated that Atlantic cod PepT1 is mainly expressed at intestinal level, but that it is also present in kidney and spleen. Analysis of its regional distribution along the intestinal tract of the fish revealed that PepT1 is ubiquitously expressed in all segments beyond the stomach, including the pyloric caeca, and through the whole midgut. Only in the last segment, which included the hindgut, was there a lower expression. Atlantic cod PepT1, the second teleost fish PepT1-type transporter documented to date, will contribute to the elucidation of the evolutionary and functional relationships among vertebrate peptide transporters. Moreover, it can represent a useful tool for the study of gut functional regionalization, as well as a marker for the analysis of temporal and spatial expression during ontogeny.


Fish Physiology and Biochemistry | 2010

Novel methodologies in marine fish larval nutrition

Luís E.C. Conceição; Cláudia Aragão; Nadège Richard; Sofia Engrola; Paulo J. Gavaia; Sara Mira; Jorge Dias

Major gaps in knowledge on fish larval nutritional requirements still remain. Small larval size, and difficulties in acceptance of inert microdiets, makes progress slow and cumbersome. This lack of knowledge in fish larval nutritional requirements is one of the causes of high mortalities and quality problems commonly observed in marine larviculture. In recent years, several novel methodologies have contributed to significant progress in fish larval nutrition. Others are emerging and are likely to bring further insight into larval nutritional physiology and requirements. This paper reviews a range of new tools and some examples of their present use, as well as potential future applications in the study of fish larvae nutrition. Tube-feeding and incorporation into Artemia of 14C-amino acids and lipids allowed studying Artemia intake, digestion and absorption and utilisation of these nutrients. Diet selection by fish larvae has been studied with diets containing different natural stable isotope signatures or diets where different rare metal oxides were added. Mechanistic modelling has been used as a tool to integrate existing knowledge and reveal gaps, and also to better understand results obtained in tracer studies. Population genomics may assist in assessing genotype effects on nutritional requirements, by using progeny testing in fish reared in the same tanks, and also in identifying QTLs for larval stages. Functional genomics and proteomics enable the study of gene and protein expression under various dietary conditions, and thereby identify the metabolic pathways which are affected by a given nutrient. Promising results were obtained using the metabolic programming concept in early life to facilitate utilisation of certain nutrients at later stages. All together, these methodologies have made decisive contributions, and are expected to do even more in the near future, to build a knowledge basis for development of optimised diets and feeding regimes for different species of larval fish.


Bone | 2003

Matrix Gla protein gene expression and protein accumulation colocalize with cartilage distribution during development of the teleost fish Sparus aurata

Jorge P. Pinto; N. Conceição; Paulo J. Gavaia; M. L. Cancela

Matrix Gla protein (MGP) is a member of the family of extracellular mineral-binding Gla proteins, expressed in several tissues with high accumulation in bone and cartilage. Although the precise molecular mechanism of action of this protein remains unknown, all available evidence indicates that MGP plays a role as an inhibitor of mineralization. We investigated the sites of gene expression and protein accumulation of MGP throughout development of the bony fish Sparus aurata, by in situ hybridization, Northern and RT-PCR Southern hybridization, and immunohistochemistry. The results obtained were compared with the patterns of developmental appearance of cartilaginous and mineralized structures in this species, identified by histological techniques and by detection of mRNA presence and protein accumulation of osteocalcin (Bone Gla protein), a marker for osteoblasts known to accumulate in bone mineralized extracellular matrix. The expression of MGP mRNA was first detected at 2 days posthatching (dph) by Northern analysis, RT-PCR amplification, and in situ hybridization, and thereafter continuously detected at various levels of intensity, until 130 dph. In situ hybridization analysis performed in parallel with immunohistochemistry indicated that until ca. 45 dph, the MGP gene was highly expressed in a number of different tissues including skull, jaw, neural and hemal arches, and heart and the protein accumulated in cartilaginous tissues. At 85 dph, a stage when most skeletal structures are mineralized, MGP gene expression and protein accumulation were restricted to the remaining cartilaginous structures, whereas osteocalcin gene expression and protein accumulation were localized in most mineralized structures. MGP gene expression was also detected in heart and kidney, although in situ hybridization only detected MGP mRNA in heart, located in the arterial bulbus and not in the cardiac muscle. Our results are in agreement with those recently described for MGP localization in adult tissues of another teleost fish, as well as available data from higher vertebrates, strengthening the hypothesis of a conserved function for MGP from teleost fish to human, a period of more than 200 million years of evolution. In addition, Sparus aurata, a marine teleost fish routinely grown in captivity, appears to be a good model to further analyze MGP gene expression and regulation.


British Journal of Nutrition | 2015

Glucose metabolism and gene expression in juvenile zebrafish ( Danio rerio ) challenged with a high carbohydrate diet: effects of an acute glucose stimulus during late embryonic life

Filipa Rocha; Jorge Dias; Sofia Engrola; Paulo J. Gavaia; Inge Geurden; Maria Teresa Dinis; Stéphane Panserat

Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf) with either glucose (2 M) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visceral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation. On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus, leaving the possibility of a specific regulation of the FBP-6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using a [¹⁴C]glucose tracer; fish previously exposed to the stimulus showed lower retention of [¹⁴C]glucose in visceral tissue (but not in muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles.


The Journal of Experimental Biology | 2014

Glucose overload in yolk has little effect on the long-term modulation of carbohydrate metabolic genes in zebrafish (Danio rerio)

Filipa Rocha; Jorge Dias; Sofia Engrola; Paulo J. Gavaia; Inge Geurden; Maria Teresa Dinis; Stéphane Panserat

Some fish show a low metabolic ability to use dietary carbohydrates. The use of early nutritional stimuli to program metabolic pathways in fish is ill defined. Therefore, studies were undertaken with zebrafish to assess the effect of high glucose levels during the embryonic stage as a lifelong modulator of genes involved in carbohydrate metabolism. Genes related to carbohydrate metabolism were expressed at low levels at 0.2 and 1 day post-fertilization (dpf). However, from 4 dpf onwards there was a significant increase on expression of all genes, suggesting that all analysed pathways were active. By microinjection, we successfully enriched zebrafish egg yolk with glucose (a 43-fold increase of basal levels). Acute effects of glucose injection on gene expression were assessed in larvae up to 10 dpf, and the programming concept was evaluated in juveniles (41 dpf) challenged with a hyperglucidic diet. At 4 dpf, larvae from glucose-enriched eggs showed a downregulation of several genes related to glycolysis, glycogenolysis, lipogenesis and carbohydrate digestion in comparison with control (saline-injected) embryos. This inhibitory regulation was suppressed after 10 dpf. At the juvenile stage, and upon switching from a low to a high digestible carbohydrate diet, early glucose enrichment had no significant effect on most analysed genes. However, these same fish showed altered expression of the genes for cytosolic phosphoenolpyruvate carboxykinase, sodium-dependent glucose cotransporter 1 and glycogen synthase, suggesting changes to the glucose storage capacity in muscle and glucose production and transport in viscera. Overall, supplementation of egg yolk with high glucose levels had little effect on the long-term modulation of carbohydrate metabolic genes in zebrafish.


Reproduction, Fertility and Development | 2013

Solea senegalensis vasa transcripts: molecular characterisation, tissue distribution and developmental expression profiles

Tiziana Pacchiarini; Ismael Cross; Ricardo B. Leite; Paulo J. Gavaia; Juan B. Ortiz-Delgado; Pedro Pousão-Ferreira; Laureana Rebordinos; Carmen Sarasquete; Elsa Cabrita

The Vasa protein is an RNA helicase belonging the DEAD (Asp-Glu-Ala-Asp)-box family. The crucial role played by the vasa gene in the germ-cell lineage of both vertebrates and invertebrates has made this gene a useful molecular marker for germinal cells and a useful tool in surrogate broodstock production using primordial germ cell transplantation. With the aim of establishing a novel approach to improving Solea senegalensis broodstock management, the vasa gene in this species was characterised. Four S. senegalensis vasa transcripts were isolated: Ssvasa1, Ssvasa2, Ssvasa3 and Ssvasa4. Their phylogenetic relationship with other vasa homologues was determined confirming the high degree of conservation of this helicase throughout evolution. Our qPCR results showed that S. senegalensis vasa transcripts are prevalently expressed in gonads, with ovary-specific expression for Ssvasa3 and Ssvasa4. During embryonic and larval development, a switch between the longest and the shortest transcripts was observed. While Ssvasa1 and Ssvasa2 were maternally supplied, Ssvasa3 and Ssvasa4 depended on the de novo expression program of the growing juveniles, suggesting that vasa mRNA could be involved in Senegalese sole gonad differentiation. In situ hybridisation and immunohistochemical analysis performed in 150-days after hatching (DAH) larvae showed vasa product expression in the germinal region of early gonads. In our work we demonstrated the usefulness of Ssvasa mRNAs as molecular markers for primordial germ cells and germinal cells during embryonic development, larval ontogenesis and gonad differentiation. Furthermore, our results confirmed the potential of vasa to help investigate germinal cell biotechnology for Senegalese sole reproduction.


Calcified Tissue International | 2004

Characterization of osteocalcin (BGP) and matrix Gla protein (MGP) fish specific antibodies: Validation for immunodetection studies in lower vertebrates

Dina C. Simes; Matthew K. Williamson; B. J. Schaff; Paulo J. Gavaia; P. M. Ingleton; Paul A. Price; M. L. Cancela

In fish species the basic mechanisms of bone development and bone remodeling are not fully understood. The classification of bone tissue in teleosts as cellular or acellular and the presence of transitional states between bone and cartilage and the finding of different types of cartilage in teleosts not previously recognized in higher vertebrates emphasizes the need for a study on the accumulation of the Gla-containing proteins MGP and BGP at the cellular level. In the present study, polyclonal antibodies developed against BGP and MGP from A. regius (a local marine teleost fish) and against MGP from G. galeus (a Pacific Ocean shark), were tested by Western blot for their specificity against BGP and MGP from several other species of teleost fish and shark. For this purpose we extracted and purified both proteins from various marine and freshwater teleosts, identified them by N-terminal amino acid sequence analysis and confirmed the presence of gamma-carboxylation in the proteins with the use of a stain specific for Gla residues. Each antibody recognized either BGP or MGP with no cross-reaction between proteins detected. All purified fish BGPs and MGPs tested were shown to be specifically recognized, thus validating the use of these antibodies for further studies.


Calcified Tissue International | 2006

Identification of a Promoter Element within the Zebrafish colXα1 Gene Responsive to Runx2 Isoforms Osf2/Cbfa1 and til-1 but not to pebp2αA2

B. Simões; N. Conceição; Carla S. B. Viegas; Jorge P. Pinto; Paulo J. Gavaia; Laurence D. Hurst; Robert N. Kelsh; M. L. Cancela

Type X collagen is a short chain collagen specifically expressed by hypertrophic chondrocytes during endochondral ossification. We report here the functional analysis of the zebrafish (Danio rerio) collagen Xα1 gene (colXα1) promoter with the identification of a region responsive to two isoforms of the runt domain transcription factor runx2. Furthermore, we provide evidence for the presence of dual promoter usage in zebrafish, a finding that should be important to further understanding of the regulation of its restricted tissue distribution and spatial-temporal expression during early development. The zebrafish colXα1 gene structure is comparable to that recently identified by comparative genomics in takifugu and shows homology with corresponding mammalian genes, indicating that its general architecture has been maintained throughout vertebrate evolution. Our data suggest that, as in mammals, runx2 plays a role in the development of the osteogenic lineage, supporting zebrafish as a model for studies of bone and cartilage development.

Collaboration


Dive into the Paulo J. Gavaia's collaboration.

Top Co-Authors

Avatar

Leonor Cancela

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. L. Cancela

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar

Vincent Laizé

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sofia Engrola

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro Pousão-Ferreira

Instituto Português do Mar e da Atmosfera

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadège Richard

University of the Algarve

View shared research outputs
Researchain Logo
Decentralizing Knowledge