Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulo Lee Ho is active.

Publication


Featured researches published by Paulo Lee Ho.


Brazilian Journal of Medical and Biological Research | 2004

Genome features of Leptospira interrogans serovar Copenhageni

Ana L. T. O. Nascimento; Sergio Verjovski-Almeida; M. A. Van Sluys; Claudia B. Monteiro-Vitorello; Luis Eduardo Aranha Camargo; Luciano Antonio Digiampietri; R.A. Harstkeerl; Paulo Lee Ho; Marilis V. Marques; Mariana C. Oliveira; João C. Setubal; David A. Haake; Elizabeth A. L. Martins

We report novel features of the genome sequence of Leptospira interrogans serovar Copenhageni, a highly invasive spirochete. Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in mammals. Genomic sequence analysis reveals the presence of a competent transport system with 13 families of genes encoding for major transporters including a three-member component efflux system compatible with the long-term survival of this organism. The leptospiral genome contains a broad array of genes encoding regulatory system, signal transduction and methyl-accepting chemotaxis proteins, reflecting the organisms ability to respond to diverse environmental stimuli. The identification of a complete set of genes encoding the enzymes for the cobalamin biosynthetic pathway and the novel coding genes related to lipopolysaccharide biosynthesis should bring new light to the study of Leptospira physiology. Genes related to toxins, lipoproteins and several surface-exposed proteins may facilitate a better understanding of the Leptospira pathogenesis and may serve as potential candidates for vaccine.


Infection and Immunity | 2008

In LipL32, the Major Leptospiral Lipoprotein, the C Terminus Is the Primary Immunogenic Domain and Mediates Interaction with Collagen IV and Plasma Fibronectin

Pricila Hauk; Felipe Macedo; Eliete C. Romero; Silvio Arruda Vasconcellos; Zenaide Maria de Morais; Angela S. Barbosa; Paulo Lee Ho

ABSTRACT LipL32 is the major leptospiral outer membrane lipoprotein expressed during infection and is the immunodominant antigen recognized during the humoral immune response to leptospirosis in humans. In this study, we investigated novel aspects of LipL32. In order to define the immunodominant domains(s) of the molecule, subfragments corresponding to the N-terminal, intermediate, and C-terminal portions of the LipL32 gene were cloned and the proteins were expressed and purified by metal affinity chromatography. Our immunoblot results indicate that the C-terminal and intermediate domains of LipL32 are recognized by sera of patients with laboratory-confirmed leptospirosis. An immunoglobulin M response was detected exclusively against the LipL32 C-terminal fragment in both the acute and convalescent phases of illness. We also evaluated the capacity of LipL32 to interact with extracellular matrix (ECM) components. Dose-dependent, specific binding of LipL32 to collagen type IV and plasma fibronectin was observed, and the binding capacity could be attributed to the C-terminal portion of this molecule. Both heparin and gelatin could inhibit LipL32 binding to fibronectin in a concentration-dependent manner, indicating that the 30-kDa heparin-binding and 45-kDa gelatin-binding domains of fibronectin are involved in this interaction. Taken together, our results provide evidence that the LipL32 C terminus is recognized early in the course of infection and is the domain responsible for mediating interaction with ECM proteins.


Applied and Environmental Microbiology | 2006

Production of Human Papillomavirus Type 16 L1 Virus-Like Particles by Recombinant Lactobacillus casei Cells

Karina Araújo Aires; Aurora M. Cianciarullo; Sylvia Mendes Carneiro; Luisa L. Villa; Enrique Boccardo; Gaspar Pérez-Martínez; Isabel Pérez-Arellano; Maria Leonor S. Oliveira; Paulo Lee Ho

ABSTRACT Infections with human papillomavirus type 16 (HPV-16) are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, the most promising vaccine against HPV-16 infection is based on the L1 major capsid protein, which self-assembles in virus-like particles (VLPs). In this work, we used a lactose-inducible system based on the Lactobacillus casei lactose operon promoter (plac) for expression of the HPV-16 L1 protein in L. casei. Expression was confirmed by Western blotting, and an electron microscopy analysis of L. casei expressing L1 showed that the protein was able to self-assemble into VLPs intracellularly. The presence of conformational epitopes on the L. casei-produced VLPs was confirmed by immunofluorescence using the anti-HPV-16 VLP conformational antibody H16.V5. Moreover, sera from mice that were subcutaneously immunized with L. casei expressing L1 reacted with Spodoptera frugiperda-produced HPV-16 L1 VLPs, as determined by an enzyme-linked immunosorbent assay. The production of L1 VLPs by Lactobacillus opens the possibility for development of new live mucosal prophylactic vaccines.


Cellular and Molecular Life Sciences | 2013

Serotype-independent pneumococcal vaccines

Eliane N. Miyaji; Maria Leonor S. Oliveira; Eneas Carvalho; Paulo Lee Ho

Streptococcus pneumoniae remains an important cause of disease with high mortality and morbidity, especially in children and in the elderly. The widespread use of the polysaccharide conjugate vaccines in some countries has led to a significant decrease in invasive disease caused by vaccine serotypes, but an increase in disease caused by non-vaccine serotypes has impacted on the overall efficacy of these vaccines on pneumococcal disease. The obvious solution to overcome such shortcomings would be the development of new formulations that provide serotype-independent immunity. This review focuses on the most promising approaches, including protein antigens, whole cell pneumococcal vaccines, and recombinant bacteria expressing pneumococcal antigens. The protective capacity of these vaccine candidates against the different stages of pneumococcal infection, including colonization, mucosal disease, and invasive disease in animal models is reviewed. Some of the human trials that have already been performed or that are currently ongoing are presented. Finally, the feasibility and the possible shortcomings of these candidates in relation to an ideal vaccine against pneumococcal infections are discussed.


Journal of Proteome Research | 2012

Venomics profiling of Thamnodynastes strigatus unveils matrix metalloproteinases and other novel proteins recruited to the toxin arsenal of rear-fanged snakes.

Ana Tung Ching Ching; Adriana Franco Paes Leme; André Zelanis; Marisa Maria Teixeira da Rocha; Maria de Fátima D. Furtado; Débora Andrade Silva; Monique R.O. Trugilho; Surza Lucia Gonçalves da Rocha; Jonas Perales; Paulo Lee Ho; Solange M.T. Serrano; Inácio L.M. Junqueira-de-Azevedo

Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake Thamnodynastes strigatus , in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (∼47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules.


Biological Chemistry | 2005

Insularinase A, a prothrombin activator from Bothrops insularis venom, is a metalloprotease derived from a gene encoding protease and disintegrin domains

Jeanne Claíne de Albuquerque Modesto; Inácio L.M. Junqueira-de-Azevedo; Ana Gisele C. Neves-Ferreira; Márcio Fritzen; Maria Luiza Vilela Oliva; Paulo Lee Ho; Jonas Perales; Ana Marisa Chudzinski-Tavassi

Abstract The first low-molecular-mass metalloprotease presenting prothrombin activating activity was purified from Bothrops insularis venom and named insularinase A. It is a single-chain protease with a molecular mass of 22 639 Da. cDNA sequence analysis revealed that the disintegrin domain of the precursor protein is post-translationally processed, producing the mature insularinase A. Analysis of its deduced amino acid sequence showed a high similarity with several fibrin(ogen)olytic metalloproteases and only a moderate similarity with prothrombin activators. However, SDS-PAGE of prothrombin after activation by insularinase A showed fragment patterns similar to those generated by group A prothrombin activators, which convert prothrombin into meizothrombin independently of the prothrombinase complex. In addition, insularinase A activates factor X and hydrolyses fibrinogen and fibrin. Chelating agents fully inhibit all insularinase A activities. Insularinase A induced neither detachment nor apoptosis of human endothelial cells and was also not able to trigger an endothelial proinflammatory cell response. Nitric oxide and prostacyclin levels released by endothelial cells were significantly increased after treatment with insularinase A. Our results show that, although its primary structure is related to class P-I fibrin(ogen)olytic metalloproteases, insularinase A is functionally similar to group A prothrombin activators.


Biochemical Journal | 2006

Lopap, a prothrombin activator from Lonomia obliqua belonging to the lipocalin family: recombinant production, biochemical characterization and structure–function insights

Cleyson Valença Reis; Sonia Aparecida de Andrade; O.H.P. Ramos; Celso Raul Romero Ramos; Paulo Lee Ho; Isabel de Fátima Correia Batista; Ana Marisa Chudzinski-Tavassi

Using a cDNA library made from Lonomia obliqua caterpillar bristles, we identified a transcript with a 603 bp open reading frame. The deduced protein corresponds to Lopap, a prothrombin activator previously isolated by our group from the bristles of this species. The mature protein is composed by 185 amino acids and shares similarity with members of the lipocalin family. The cDNA encoding the mature form was amplified by PCR, subcloned into pAE vector and used to transform Escherichia coli BL21(DE3) cells. As for the native Lopap, the recombinant fusion protein shows enzymatic activity, promotes prothrombin hydrolysis, generates fragments similar to prethrombin-2 and fragment 1.2 as intermediates, and generates thrombin as the final product. In addition, structural bioinformatics studies indicated several interesting molecular features, including the residues that could be responsible for Lopaps serine protease-like activity and the role of calcium binding in this context. Such catalytic activity has never been found in other members of the lipocalin family. This is the first report describing the recombinant production and biochemical characterization of a Lonomia obliqua lipocalin, as well as the structural features that could be responsible for its serine protease-like catalytic activity.


Toxicon | 2001

Cross reactivity of different specific Micrurus antivenom sera with homologous and heterologous snake venoms

Álvaro Rossan de Brandão Prieto da Silva; Ivone Kasuko Yamagushi; Josefina Farina Morais; Hisako Gondo Higashi; Isaias Raw; Paulo Lee Ho; Jane Silveira de Oliveira

Coral snakes are the only Elapids in America. They are represented by three genera: Leptomicrurus, Micruroides and Micrurus, of which the latter are the most abundant and diversified group. Little is known about the biochemistry of Micrurus venoms due to low availability. Here, we present a study on the cross reactivity of different specific Micrurus antivenom with homologous and heterologous snake venoms in order to contribute to the generation of more efficient antiserum for therapeutic purposes. The three specific antisera tested, anti-Micrurus corallinus, anti-Micrurus frontalis, and anti-Micrurus spixii, as well as the bivalent anti-elapid venom sera, raised against a mixture (50% each) of Micrurus frontalis and Micrurus corallinus venoms, were assayed by Western Blot against Micrurus and non-Micrurus elapid venoms. An antisera raised against a recombinant alpha-neurotoxin-like protein from Micrurus corallinus venom, only reacted in Western blot with its homologous venom, indicating that this protein is specific for Micrurus corallinus coral snake.


Biochimica et Biophysica Acta | 2009

Stability improvement of the fatty acid binding protein Sm14 from S. mansoni by Cys replacement: Structural and functional characterization of a vaccine candidate☆☆☆

Celso Raul Romero Ramos; Alberto Spisni; Sérgio Oyama; Mauricio L. Sforça; Henrique Roman Ramos; Mônica Magno Vilar; Adriana C. Alves; Rita de Cássia Rossi Figueredo; Miriam Tendler; Nilson Ivo Tonin Zanchin; Thelma A. Pertinhez; Paulo Lee Ho

The Schistosoma mansoni fatty acid binding protein (FABP), Sm14, is a vaccine candidate against, S. mansoni and F. hepatica. Previously, we demonstrated the importance of a correct fold to achieve protection in immunized animals after cercariae challenge [[10]. C.R.R. Ramos, R.C.R. Figueredo, T.A. Pertinhez, M.M. Vilar, A.L.T.O. Nascimento, M. Tendler, I. Raw, A. Spisni, P.L. Ho, Gene structure and M20T polymorphism of the Schistosoma mansoni Sm14 fatty acid-binding protein: structural, functional and immunoprotection analysis. J. Biol. Chem. 278 (2003) 12745-12751.]. Here we show that the reduction of vaccine efficacy over time is due to protein dimerization and subsequent aggregation. We produced the mutants Sm14-M20(C62S) and Sm14-M20(C62V) that, as expected, did not dimerize in SDS-PAGE. Molecular dynamics calculations and unfolding experiments highlighted a higher structural stability of these mutants with respect to the wild-type. In addition, we found that the mutated proteins, after thermal denaturation, refolded to their active native molecular architecture as proved by the recovery of the fatty acid binding ability. Sm14-M20(C62V) turned out to be the more stable form over time, providing the basis to determine the first 3D solution structure of a Sm14 protein in its apo-form. Overall, Sm14-M20(C62V) possesses an improved structural stability over time, an essential feature to preserve its immunization capability and, in experimentally immunized animals, it exhibits a protection effect against S. mansoni cercariae infections comparable to the one obtained with the wild-type protein. These facts indicate this protein as a good lead molecule for large-scale production and for developing an effective Sm14 based anti-helminthes vaccine.


Journal of Toxicology-toxin Reviews | 1995

Reverse biology applied to Micrurus corallinus, a South American coral snake

Paulo Lee Ho; Marcelo B. Soares; Tetsuo Yamane; Isaias Raw

AbstractLittle is known about the coral snakes venom components. Clarification of the primary structure of polypeptidic toxins was hampered until now by the lack of enough venom for protein purification and chemistry. Using the Reverse Biology approach, several potential Micrurus corallinus toxins were characterized by cDNA cloning. The deduced proteins shared homology with known snake toxins, such as α-neurotoxins, phospholipase A2, natriuretic peptides and lectins. To our knowledge, these are the first complete primary structure characterization of coral snake venom toxins.

Collaboration


Dive into the Paulo Lee Ho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge