Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulo Mazzafera is active.

Publication


Featured researches published by Paulo Mazzafera.


Journal of Integrative Plant Biology | 2010

Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants

Jullyana Cristina Magalhães Silva Moura; César Augusto Valencise Bonine; Juliana De Oliveira Fernandes Viana; Marcelo Carnier Dornelas; Paulo Mazzafera

Lignin is a polymer of phenylpropanoid compounds formed through a complex biosynthesis route, represented by a metabolic grid for which most of the genes involved have been sequenced in several plants, mainly in the model-plants Arabidopsis thaliana and Populus. Plants are exposed to different stresses, which may change lignin content and composition. In many cases, particularly for plant-microbe interactions, this has been suggested as defence responses of plants to the stress. Thus, understanding how a stressor modulates expression of the genes related with lignin biosynthesis may allow us to develop study-models to increase our knowledge on the metabolic control of lignin deposition in the cell wall. This review focuses on recent literature reporting on the main types of abiotic and biotic stresses that alter the biosynthesis of lignin in plants.


PLOS ONE | 2011

An Arabidopsis Mitochondrial Uncoupling Protein Confers Tolerance to Drought and Salt Stress in Transgenic Tobacco Plants

Kevin Begcy; Eduardo D. Mariano; Lucia Mattiello; Alessandra Vasconcellos Nunes; Paulo Mazzafera; Ivan de Godoy Maia; Marcelo Menossi

Background Plants are challenged by a large number of environmental stresses that reduce productivity and even cause death. Both chloroplasts and mitochondria produce reactive oxygen species under normal conditions; however, stress causes an imbalance in these species that leads to deviations from normal cellular conditions and a variety of toxic effects. Mitochondria have uncoupling proteins (UCPs) that uncouple electron transport from ATP synthesis. There is evidence that UCPs play a role in alleviating stress caused by reactive oxygen species overproduction. However, direct evidence that UCPs protect plants from abiotic stress is lacking. Methodology/Principal Findings Tolerances to salt and water deficit were analyzed in transgenic tobacco plants that overexpress a UCP (AtUCP1) from Arabidopsis thaliana. Seeds of AtUCP1 transgenic lines germinated faster, and adult plants showed better responses to drought and salt stress than wild-type (WT) plants. These phenotypes correlated with increased water retention and higher gas exchange parameters in transgenic plants that overexpress AtUCP1. WT plants exhibited increased respiration under stress, while transgenic plants were only slightly affected. Furthermore, the transgenic plants showed reduced accumulation of hydrogen peroxide in stressed leaves compared with WT plants. Conclusions/Significance Higher levels of AtUCP1 improved tolerance to multiple abiotic stresses, and this protection was correlated with lower oxidative stress. Our data support previous assumptions that UCPs reduce the imbalance of reactive oxygen species. Our data also suggest that UCPs may play a role in stomatal closure, which agrees with other evidence of a direct relationship between these proteins and photosynthesis. Manipulation of the UCP protein expression in mitochondria is a new avenue for crop improvement and may lead to crops with greater tolerance for challenging environmental conditions.


Brazilian Journal of Plant Physiology | 2006

Brazilian coffee genome project: an EST-based genomic resource

Luiz Gonzaga Esteves Vieira; Alan Carvalho Andrade; Carlos Augusto Colombo; Ana Heloneida de Araújo Moraes; Ângela Metha; Angélica Carvalho de Oliveira; Carlos Alberto Labate; Celso Luis Marino; Claudia B. Monteiro-Vitorello; Damares C. Monte; Éder A. Giglioti; Edna T. Kimura; Eduardo Romano; Eiko E. Kuramae; Eliana Gertrudes de Macedo Lemos; Elionor Rita Pereira de Almeida; Erika C. Jorge; Erika V.S. Albuquerque; Felipe Rodrigues da Silva; Felipe Vinecky; Haiko Enok Sawazaki; Hamza Fahmi A. Dorry; Helaine Carrer; Ilka Nacif Abreu; João A. N. Batista; João Batista Teixeira; João Paulo Kitajima; Karem Guimarães Xavier; Liziane Maria de Lima; Luis Eduardo Aranha Camargo

Coffee is one of the most valuable agricultural commodities and ranks second on international trade exchanges. The genus Coffea belongs to the Rubiaceae family which includes other important plants. The genus contains about 100 species but commercial production is based only on two species, Coffea arabica and Coffea canephora that represent about 70 % and 30 % of the total coffee market, respectively. The Brazilian Coffee Genome Project was designed with the objective of making modern genomics resources available to the coffee scientific community, working on different aspects of the coffee production chain. We have single-pass sequenced a total of 214,964 randomly picked clones from 37 cDNA libraries of C. arabica, C. canephora and C. racemosa, representing specific stages of cells and plant development that after trimming resulted in 130,792, 12,381 and 10,566 sequences for each species, respectively. The ESTs clustered into 17,982 clusters and 32,155 singletons. Blast analysis of these sequences revealed that 22 % had no significant matches to sequences in the National Center for Biotechnology Information database (of known or unknown function). The generated coffee EST database resulted in the identification of close to 33,000 different unigenes. Annotated sequencing results have been stored in an online database at http://www.lge.ibi.unicamp.br/cafe. Resources developed in this project provide genetic and genomic tools that may hold the key to the sustainability, competitiveness and future viability of the coffee industry in local and international markets.


Biologia Plantarum | 2004

Influence of a Brassinosteroid Analogue on Antioxidant Enzymes in Rice Grown in Culture Medium with NaCl

M. Núñez; Paulo Mazzafera; L.M. Mazorra; W.J. Siqueira; M.A.T. Zullo

We studied the effects of a polyhydroxylated spirostanic brassinosteroid analogue (BB-16) on the activities of antioxidant enzymes in rice seedlings grown in vitro in culture medium supplemented with NaCl. Seedlings were grown in medium with 75 mM NaCl and 0.001 or 0.01 mg dm−3 BB-16 for 16 d or 3-d-old seedlings were exposed for 4 d to 0, 0.001 or 0.01 mg dm−3 BB-16 then further grown in medium with 75 mM NaCl without BB-16. Seedlings exposed to 0.01 mg dm−3 BB-16 for 16 d showed significant increase in the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) and a slight increase in ascorbate peroxidase (APX). On the other hand, 4-d exposure to BB-16 only increased SOD and CAT activities at concentration 0.001 mg dm−3. GR activity was not altered by this BB-16 treatment. These results indicated that BB-16, which is structurally modified in the lateral chain in relation to natural brassinosteroids, changes the activity of key antioxidant enzymes, which might confer tolerance to saline stress.


Phytochemistry | 2000

Characterization of polyphenol oxidase in coffee.

Paulo Mazzafera; Simon P. Robinson

Polyphenol oxidase (PPO) was characterized in partially purified extracts of leaves (PPO-L) and fruit endosperm (PPO-E) of coffee (Coffea arabica L.). PPO activity was higher in early developmental stages of both leaves and endosperm of fruits. Wounding or exposure of coffee leaves to methyl jasmonate increased PPO activity 1.5-4-fold. PPO was not latent and was not activated by protease treatment. PPO activity was stimulated 10-15% with sodium dodecyl sulphate (SDS) at 0.35-1.75 mM, but at higher concentrations activities were similar to the control samples, without detergent. Prolonged incubation of extracts with trypsin or proteinase K inhibited PPO activity but pepsin had no effect. Inhibition of PPO with proteinase K was increased in the presence of SDS. PPO activity from both tissues was optimal at pH 6-7 and at an assay temperature of 30 degrees C. Activity was highest with chlorogenic acid as substrate with a Km of 0.882 mM (PPO-L) and 2.27 mM (PPO-E). Hexadecyl trimethyl-ammonium bromide, polyvinylpyrrolidone 40. cinnamic acid and salicylhydroxamic acid inhibited PPO from both tissues. Both enzymes were inactivated by heat but the activity in endosperm extracts was more heat labile than that from leaves. The apparent Mr determined by gel filtration was 46 (PPO-L) and 50 kDa (PPO-E). Activity-stained SDS polyacrylamide gel electrophoresis (PAGE) gels and western blots probed with PPO antibodies suggested the existence of a 67 kDa PPO which is susceptible to proteolytic cleavage that generates a 45 kDa active form.


Food Chemistry | 1999

Chemical composition of defective coffee beans

Paulo Mazzafera

Abstract Immature-black beans (VP) and immature beans (V), known by the Brazilian coffee terminology as ‘cafe verde-preto’ and ‘cafe verde’, are defective beans and cause a reduction of the quality of the beverage. Their presence in raw coffee samples is due to a high percentage of immature fruits at harvest. In this study, some of their physico-chemical properties and chemical composition were investigated and compared with non-defective coffee beans (B). B beans were heavier and had higher humidity than VP and V. Although they did not differ with respect to pH, V beans were more acidic (titrable acidity). Sucrose was the main soluble carbohydrate in all samples and its content in B beans was higher than defective beans. Reducing sugars were found at higher concentration in V and B beans. Protein contents increased from VP to B (VP


Journal of Chemical Ecology | 2006

Phenol Contents, Oxidase Activities, and the Resistance of Coffee to the Leaf Miner Leucoptera coffeella

Daniel Alves Ramiro; Oliveiro Guerreiro-Filho; Paulo Mazzafera

We examined the role of phenolic compounds, and the enzymes peroxidase and polyphenol oxidase, in the expression of resistance of coffee plants to Leucoptera coffeella (Lepidoptera: Lyonetiidae). The concentrations of total soluble phenols and chlorogenic acid (5-caffeoylquinic acid), and the activities of the oxidative enzymes peroxidase (POD) and polyphenol oxidase (PPO), were estimated in leaves of Coffea arabica, C. racemosa, and progenies of crosses between these species, which have different levels of resistance, before and after attack by this insect. The results indicate that phenols do not play a central role in resistance to the coffee leaf miner. Differences were detected between the parental species in terms of total soluble phenol concentrations and activities of the oxidative enzymes. However, resistant and susceptible hybrid plants did not differ in any of these characteristics. Significant induction of chlorogenic acid and PPO was only found in C. racemosa, the parental donator of the resistance genes against L. coffeella. High-performance liquid chromatography (HPLC) analysis also showed qualitative similarity between hybrids and the susceptible C. arabica. These results suggest that the phenolic content and activities of POD and PPO in response to the attack by the leaf miner may not be a strong evidence of their participation in direct defensive mechanisms.


Chemosphere | 2009

Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations

Sara Adrián López de Andrade; Priscila Lupino Gratão; Marlene Aparecida Schiavinato; Adriana Parada Dias da Silveira; Ricardo A. Azevedo; Paulo Mazzafera

The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth, nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes.


Functional Plant Biology | 2007

Selenium-induced oxidative stress in coffee cell suspension cultures

Rui A. Gomes-Junior; Priscila Lupino Gratão; Salete A. Gaziola; Paulo Mazzafera; Peter J. Lea; Ricardo A. Azevedo

Selenium (Se) is an essential element for humans and animals that is required for key antioxidant reactions, but can be toxic at high concentrations. We have investigated the effect of Se in the form of selenite on coffee cell suspension cultures over a 12-day period. The antioxidant defence systems were induced in coffee cells grown in the presence of 0.05 and 0.5 mm sodium selenite (Na2SeO3). Lipid peroxidation and alterations in antioxidant enzymes were the main responses observed, including a severe reduction in ascorbate peroxidase activity, even at 0.05 mm sodium selenite. Ten superoxide dismutase (SOD) isoenzymes were detected and the two major Mn-SOD isoenzymes (bands V and VI) responded more to 0.05 mm selenite. SOD band V exhibited a general decrease in activity after 12 h of treatment with 0.05 mm selenite, whereas band VI exhibited the opposite behavior and increased in activity. An extra isoenzyme of glutathione reductase (GR) was induced in the presence of selenite, which confirmed our previous results obtained with Cd and Ni indicating that this GR isoenzyme may have the potential to be a marker for oxidative stress in coffee.


Nature Chemical Biology | 2013

A public-private partnership to unlock the untargeted kinome

Stefan Knapp; Paulo Arruda; Julian Blagg; Stephen K. Burley; David H. Drewry; A. Edwards; Doriano Fabbro; Paul Gillespie; Nathanael S. Gray; Bernhard Kuster; Karen E Lackey; Paulo Mazzafera; Nicholas C. O. Tomkinson; Timothy M. Willson; Paul Workman; William J. Zuercher

Chemical probes are urgently needed to functionally annotate hitherto-untargeted kinases and stimulate new drug discovery efforts to address unmet medical needs. The size of the human kinome combined with the high cost associated with probe generation severely limits access to new probes. We propose a large-scale public-private partnership as a new approach that offers economies of scale, minimized redundancy and sharing of risk and cost.

Collaboration


Dive into the Paulo Mazzafera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Bottcher

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Igor Cesarino

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Ilka Nacif Abreu

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro Araújo

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Silvana Creste

Escola Superior de Agricultura Luiz de Queiroz

View shared research outputs
Researchain Logo
Decentralizing Knowledge