Paulo Morelato França
Sao Paulo State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paulo Morelato França.
International Journal of Production Research | 2009
Claudio Fabiano Motta Toledo; Paulo Morelato França; Reinaldo Morabito; Alf Kimms
This paper introduces an evolutionary algorithm as a procedure to solve the Synchronized and Integrated Two-Level Lot Sizing and Scheduling Problem (SITLSP). This problem can be found in some industrial settings, mainly soft drink companies, where the production process involves two interdependent levels with decisions concerning raw material storage and soft drink bottling. The challenge is to simultaneously determine the lot-sizing and scheduling of raw materials in tanks and soft drinks in bottling lines, where setup costs and times depend on the previous items stored and bottled. A multi-population genetic algorithm approach with a novel representation of solutions for individuals and a hierarchical ternary tree structure for populations is proposed. Computational tests include comparisons with an exact approach for small-to-moderate-sized instances and with real-world production plans provided by a manufacturer.
Computers & Operations Research | 2013
Claudio Fabiano Motta Toledo; Renato Resende Ribeiro de Oliveira; Paulo Morelato França
The present paper proposes a new hybrid multi-population genetic algorithm (HMPGA) as an approach to solve the multi-level capacitated lot sizing problem with backlogging. This method combines a multi-population based metaheuristic using fix-and-optimize heuristic and mathematical programming techniques. A total of four test sets from the MULTILSB (Multi-Item Lot-Sizing with Backlogging) library are solved and the results are compared with those reached by two other methods recently published. The results have shown that HMPGA had a better performance for most of the test sets solved, specially when longer computing time is given.
Computers & Operations Research | 2013
Fábio Luiz Usberti; Paulo Morelato França; André Luiz Morelato França
The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found.
Journal of Computational and Applied Mathematics | 2014
Claudio Fabiano Motta Toledo; Lucas de Oliveira; Paulo Morelato França
This paper applies a genetic algorithm with hierarchically structured population to solve unconstrained optimization problems. The population has individuals distributed in several overlapping clusters, each one with a leader and a variable number of support individuals. The hierarchy establishes that leaders must be fitter than its supporters with the topological organization of the clusters following a tree. Computational tests evaluate different population structures, population sizes and crossover operators for better algorithm performance. A set of known benchmark test problems is solved and the results found are compared with those obtained from other methods described in the literature, namely, two genetic algorithms, a simulated annealing, a differential evolution and a particle swarm optimization. The results indicate that the method employed is capable of achieving better performance than the previous approaches in regard as the two criteria usually employed for comparisons: the number of function evaluations and rate of success. The method also has a superior performance if the number of problems solved is taken into account.
Journal of The Franklin Institute-engineering and Applied Mathematics | 2011
Maria Cristina N. Gramani; Paulo Morelato França; Marcos Nereu Arenales
Abstract Two fundamental processes usually arise in the production planning of many industries. The first one consists of deciding how many final products of each type have to be produced in each period of a planning horizon, the well-known lot sizing problem. The other process consists of cutting raw materials in stock in order to produce smaller parts used in the assembly of final products, the well-studied cutting stock problem. In this paper the decision variables of these two problems are dependent of each other in order to obtain a global optimum solution. Setups that are typically present in lot sizing problems are relaxed together with integer frequencies of cutting patterns in the cutting problem. Therefore, a large scale linear optimizations problem arises, which is exactly solved by a column generated technique. It is worth noting that this new combined problem still takes the trade-off between storage costs (for final products and the parts) and trim losses (in the cutting process). We present some sets of computational tests, analyzed over three different scenarios. These results show that, by combining the problems and using an exact method, it is possible to obtain significant gains when compared to the usual industrial practice, which solve them in sequence.
Computers & Operations Research | 2014
Laura Silva de Assis; Paulo Morelato França; Fábio Luiz Usberti
The capacitated redistricting problem (CRP) has the objective to redefine, under a given criterion, an initial set of districts of an urban area represented by a geographic network. Each node in the network has different types of demands and each district has a limited capacity. Real-world applications consider more than one criteria in the design of the districts, leading to a multicriteria CRP (MCRP). Examples are found in political districting, sales design, street sweeping, garbage collection and mail delivery. This work addresses the MCRP applied to power meter reading and two criteria are considered: compactness and homogeneity of districts. The proposed solution framework is based on a greedy randomized adaptive search procedure and multicriteria scalarization techniques to approximate the Pareto frontier. The computational experiments show the effectiveness of the method for a set of randomly generated networks and for a real-world network extracted from the city of Sao Paulo.
Computers & Operations Research | 2011
Fábio Luiz Usberti; Paulo Morelato França; André Luiz Morelato França
The Open Capacitated Arc Routing Problem (OCARP) is a NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours that services a subset of edges with positive demand under capacity constraints. This problem is related to the Capacitated Arc Routing Problem (CARP) but differs from it since OCARP does not consider a depot, and tours are not constrained to form cycles. Applications to OCARP from literature are discussed. A new integer linear programming formulation is given, followed by some properties of the problem. A reactive path-scanning heuristic, guided by a cost-demand edge-selection and ellipse rules, is proposed and compared with other successful CARP path-scanning heuristics from literature. Computational tests were conducted using a set of 411 instances, divided into three classes according to the tightness of the number of vehicles available; results reveal the first lower and upper bounds, allowing to prove optimality for 133 instances.
Journal of Heuristics | 2015
Claudio Fabiano Motta Toledo; Márcio da Silva Arantes; Marcelo Yukio Bressan Hossomi; Paulo Morelato França; Kerem Akartunali
In this paper, we propose a simple but efficient heuristic that combines construction and improvement heuristic ideas to solve multi-level lot-sizing problems. A relax-and-fix heuristic is firstly used to build an initial solution, and this is further improved by applying a fix-and-optimize heuristic. We also introduce a novel way to define the mixed-integer subproblems solved by both heuristics. The efficiency of the approach is evaluated solving two different classes of multi-level lot-sizing problems: the multi-level capacitated lot-sizing problem with backlogging and the two-stage glass container production scheduling problem (TGCPSP). We present extensive computational results including four test sets of the Multi-item Lot-Sizing with Backlogging library, and real-world test problems defined for the TGCPSP, where we benchmark against state-of-the-art methods from the recent literature. The computational results show that our combined heuristic approach is very efficient and competitive, outperforming benchmark methods for most of the test problems.
Computers & Operations Research | 2013
Alexander J. Benavides; Marcus Ritt; Luciana S. Buriol; Paulo Morelato França
We present a metaheuristic approach which combines constructive heuristics and local searches based on sampling with path relinking. Its effectiveness is demonstrated by an application to the problem of allocating switches in electrical distribution networks to improve their reliability. Our approach also treats the service restoration problem, which has to be solved as a subproblem, to evaluate the reliability benefit of a given switch allocation proposal. Comparisons with other metaheuristics and with a branch-and-bound procedure evaluate its performance.
congress on evolutionary computation | 2011
Claudio Fabiano Motta Toledo; Renato Resende Ribeiro de Oliveira; Paulo Morelato França
This paper presents preliminary results found by a hybrid heuristic applied to solve the Multi-Level Capacitated Lot Sizing Problem (MLCLSP). The proposed method combines a multi-population genetic algorithm and fix-and-optimize heuristic. These methods are also integrated to a mathematical programming approach. For this, a mathematical reformulation of MLCLSP model is proposed to embed the exact solution of the model in the heuristic approaches. The hybrid heuristic is evaluated in two sets of benchmark instances. The solutions found are compared with those reached by other methods from literature. The preliminary results obtained indicate that the hybrid heuristic outperforms other approaches in the majority of problems solved.