Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulo Rizzo Ramires is active.

Publication


Featured researches published by Paulo Rizzo Ramires.


Journal of Applied Physiology | 2009

Sympathetic hyperactivity differentially affects skeletal muscle mass in developing heart failure : role of exercise training

Aline V. N. Bacurau; Maíra A. Jardim; Julio Cesar Batista Ferreira; Luiz Roberto Grassmann Bechara; Carlos R. Bueno; Tatiana Carolina Alba-Loureiro; Carlos Eduardo Negrão; Dulce Elena Casarini; Rui Curi; Paulo Rizzo Ramires; Anselmo S. Moriscot; Patricia C. Brum

Sympathetic hyperactivity (SH) is a hallmark of heart failure (HF), and several lines of evidence suggest that SH contributes to HF-induced skeletal myopathy. However, little is known about the influence of SH on skeletal muscle morphology and metabolism in a setting of developing HF, taking into consideration muscles with different fiber compositions. The contribution of SH on exercise tolerance and skeletal muscle morphology and biochemistry was investigated in 3- and 7-mo-old mice lacking both alpha(2A)- and alpha(2C)-adrenergic receptor subtypes (alpha(2A)/alpha(2C)ARKO mice) that present SH with evidence of HF by 7 mo. To verify whether exercise training (ET) would prevent skeletal muscle myopathy in advanced-stage HF, alpha(2A)/alpha(2C)ARKO mice were exercised from 5 to 7 mo of age. At 3 mo, alpha(2A)/alpha(2C)ARKO mice showed no signs of HF and preserved exercise tolerance and muscular norepinephrine with no changes in soleus morphology. In contrast, plantaris muscle of alpha(2A)/alpha(2C)ARKO mice displayed hypertrophy and fiber type shift (IIA --> IIX) paralleled by capillary rarefaction, increased hexokinase activity, and oxidative stress. At 7 mo, alpha(2A)/alpha(2C)ARKO mice displayed exercise intolerance and increased muscular norepinephrine, muscular atrophy, capillary rarefaction, and increased oxidative stress. ET reestablished alpha(2A)/alpha(2C)ARKO mouse exercise tolerance to 7-mo-old wild-type levels and prevented muscular atrophy and capillary rarefaction associated with reduced oxidative stress. Collectively, these data provide direct evidence that SH is a major factor contributing to skeletal muscle morphological changes in a setting of developing HF. ET prevented skeletal muscle myopathy in alpha(2A)/alpha(2C)ARKO mice, which highlights its importance as a therapeutic tool for HF.


Journal of Molecular and Cellular Cardiology | 2008

Intracellular mechanisms of specific β-adrenoceptor antagonists involved in improved cardiac function and survival in a genetic model of heart failure

Jan B. Bartholomeu; Andréa Somolanji Vanzelli; Natale P. L. Rolim; Julio Cesar Batista Ferreira; Luiz Roberto Grassmann Bechara; Leonardo Y. Tanaka; Kaleizu Teodoro Rosa; Márcia N.M. Alves; Alessandra Medeiros; Katt C. Mattos; Marcele A. Coelho; M.C. Irigoyen; Eduardo M. Krieger; José Eduardo Krieger; Carlos Eduardo Negrão; Paulo Rizzo Ramires; Silvia Guatimosim; Patricia C. Brum

beta-blockers, as class, improve cardiac function and survival in heart failure (HF). However, the molecular mechanisms underlying these beneficial effects remain elusive. In the present study, metoprolol and carvedilol were used in doses that display comparable heart rate reduction to assess their beneficial effects in a genetic model of sympathetic hyperactivity-induced HF (alpha(2A)/alpha(2C)-ARKO mice). Five month-old HF mice were randomly assigned to receive either saline, metoprolol or carvedilol for 8 weeks and age-matched wild-type mice (WT) were used as controls. HF mice displayed baseline tachycardia, systolic dysfunction evaluated by echocardiography, 50% mortality rate, increased cardiac myocyte width (50%) and ventricular fibrosis (3-fold) compared with WT. All these responses were significantly improved by both treatments. Cardiomyocytes from HF mice showed reduced peak [Ca(2+)](i) transient (13%) using confocal microscopy imaging. Interestingly, while metoprolol improved [Ca(2+)](i) transient, carvedilol had no effect on peak [Ca(2+)](i) transient but also increased [Ca(2+)] transient decay dynamics. We then examined the influence of carvedilol in cardiac oxidative stress as an alternative target to explain its beneficial effects. Indeed, HF mice showed 10-fold decrease in cardiac reduced/oxidized glutathione ratio compared with WT, which was significantly improved only by carvedilol treatment. Taken together, we provide direct evidence that the beneficial effects of metoprolol were mainly associated with improved cardiac Ca(2+) transients and the net balance of cardiac Ca(2+) handling proteins while carvedilol preferentially improved cardiac redox state.


Experimental Biology and Medicine | 2010

Aerobic exercise training improves Ca2+ handling and redox status of skeletal muscle in mice

Julio Cesar Batista Ferreira; Aline V. N. Bacurau; Carlos R. Bueno; Telma C Cunha; Leonardo Y. Tanaka; Maíra A. Jardim; Paulo Rizzo Ramires; Patricia C. Brum

Exercise training is known to promote relevant changes in the properties of skeletal muscle contractility toward powerful fibers. However, there are few studies showing the effect of a well-established exercise training protocol on Ca2+ handling and redox status in skeletal muscles with different fiber-type compositions. We have previously standardized a valid and reliable protocol to improve endurance exercise capacity in mice based on maximal lactate steady-state workload (MLSSw). The aim of this study was to investigate the effect of exercise training, performed at MLSSw, on the skeletal muscle Ca2+ handling-related protein levels and cellular redox status in soleus and plantaris. Male C57BL/6J mice performed treadmill training at MLSSw over a period of eight weeks. Muscle fiber-typing was determined by myosin ATPase histochemistry, citrate synthase activity by spectrophotometric assay, Ca2+ handling-related protein levels by Western blot and reduced to oxidized glutathione ratio (GSH:GSSG) by high-performance liquid chromatography. Trained mice displayed higher running performance and citrate synthase activity compared with untrained mice. Improved running performance in trained mice was paralleled by fast-to-slow fiber-type shift and increased capillary density in both plantaris and soleus. Exercise training increased dihydropyridine receptor (DHPR) α2 subunit, ryanodine receptor and Na+/Ca2+ exchanger levels in plantaris and soleus. Moreover, exercise training elevated DHPR β1 subunit and sarcoplasmic reticulum Ca2+-ATPase (SERCA) 1 levels in plantaris and SERCA2 levels in soleus of trained mice. Skeletal muscle GSH content and GSH:GSSG ratio was increased in plantaris and soleus of trained mice. Taken together, our findings indicate that MLSSw exercise-induced better running performance is, in part, due to increased levels of proteins involved in skeletal muscle Ca2+ handling, whereas this response is partially dependent on specificity of skeletal muscle fiber-type composition. Finally, we demonstrated an augmented cellular redox status and GSH antioxidant capacity in trained mice.


International Journal of Cardiology | 2014

NADPH oxidase hyperactivity induces plantaris atrophy in heart failure rats

Luiz Roberto Grassmann Bechara; José Bianco Nascimento Moreira; Paulo R. Jannig; Vanessa A. Voltarelli; Paulo Magno Martins Dourado; Andrea Rodrigues Vasconcelos; Cristoforo Scavone; Paulo Rizzo Ramires; Patricia C. Brum

BACKGROUND Skeletal muscle wasting is associated with poor prognosis and increased mortality in heart failure (HF) patients. Glycolytic muscles are more susceptible to catabolic wasting than oxidative ones. This is particularly important in HF since glycolytic muscle wasting is associated with increased levels of reactive oxygen species (ROS). However, the main ROS sources involved in muscle redox imbalance in HF have not been characterized. Therefore, we hypothesized that NADPH oxidases would be hyperactivated in the plantaris muscle of infarcted rats, contributing to oxidative stress and hyperactivation of the ubiquitin-proteasome system (UPS), ultimately leading to atrophy. METHODS Rats were submitted to myocardial infarction (MI) or Sham surgery. Four weeks after surgery, MI and Sham groups underwent eight weeks of treatment with apocynin, a NADPH oxidase inhibitor, or placebo. NADPH oxidase activity, oxidative stress markers, NF-κB activity, p38 MAPK phosphorylation, mRNA and sarcolemmal protein levels of NADPH oxidase components, UPS activation and fiber cross-sectional area were assessed in the plantaris muscle. RESULTS The plantaris of MI rats displayed atrophy associated with increased Nox2 mRNA and sarcolemmal protein levels, NADPH oxidase activity, ROS production, lipid hydroperoxides levels, NF-κB activity, p38 MAPK phosphorylation and UPS activation. NADPH oxidase inhibition by apocynin prevented MI-induced skeletal muscle atrophy by reducing ROS production, NF-κB hyperactivation, p38 MAPK phosphorylation and proteasomal hyperactivity. CONCLUSION Our data provide evidence for NADPH oxidase hyperactivation as an important source of ROS production leading to plantaris atrophy in heart failure rats, suggesting that this enzyme complex plays key role in skeletal muscle wasting in HF.


Nitric Oxide | 2015

Exercise improves endothelial function: A local analysis of production of nitric oxide and reactive oxygen species

Leonardo Y. Tanaka; Luiz Roberto Grassmann Bechara; Adriana Marques dos Santos; Camila Paixão Jordão; Luís Gustavo Oliveira de Sousa; Teresa Bartholomeu; Laura I. Ventura; Francisco Rafael Martins Laurindo; Paulo Rizzo Ramires

This study aimed at investigating the acute effects of aerobic exercise on endothelium-dependent vasomotor function of rat aorta, as well as mechanisms involved in endothelial nitric oxide (NO) bioactivity. Wistar rats were assigned to either a resting control (C, n = 21) or acutely exercised (E, n = 21) groups (60 min, 55-60% of maximum speed). After exercise, thoracic aorta was excised and cut into rings. Two rings were promptly applied to evaluate vasomotor function and the rest of aorta was used for additional measurements. Acute exercise significantly improved maximum ACh-induced relaxation (C, 91.6 ± 1.2 vs. E, 102.4 ± 1.7%, p < 0.001) and sensitivity to ACh (C, -7.3 ± 0.06 vs. E, -7.3 ± 0.02 log M, p < 0.01), and was accompanied by significantly increases on serine1177 eNOS phosphorylation, reflecting its enhanced activation. However, acute exercise also enhanced both superoxide and hydrogen peroxide production, as assayed by dihydroethidium oxidation, lucigenin chemiluminescence and Amplex Red assays. We also provided evidence for Nox2 NADPH oxidase (Nox) activation through gp91dstat-mediated inhibition of superoxide signals. Enhanced arterial relaxations associated with acute exercise were nearly-completely prevented by catalase, suggesting a role for paracrine hydrogen peroxide. Despite increased detectable oxidant generation, cellular oxidative stress was not evident, as suggested by unaltered GSH:GSSG ratio and lipid hydroperoxides. Collectively, these results demonstrate that one bout of moderate aerobic exercise improves endothelial function by increasing NO bioavailability, while superoxide and hydrogen peroxide are generated in a controlled fashion.


Metabolism-clinical and Experimental | 1993

Exercise tolerance is lower in type I diabetics compared with normal young men

Paulo Rizzo Ramires; Cláudia Lúcia de Moraes Forjaz; Maria E. R. Silva; Jayme Diament; William Nicolau; Bernardo Liberman; Carlos Eduardo Negrão

The present investigation was conducted to study metabolic and hormonal responses to prolonged exercise to exhaustion in insulin-dependent diabetic subjects. Sixteen healthy subjects (control) and 15 diabetics with no-insulin administration for 12 hours were studied. They were submitted to short-term exercise to exhaustion on a cycle ergometer at 55% to 60% of maximum oxygen consumption (VO2max). Exercise tolerance was significantly lower in diabetic subjects (66 +/- 6.7 v 117 +/- 9.4 minutes), and glucose concentration was significantly higher in these subjects. At exhaustion, only diabetic subjects showed a significant decrease in glycemia (142 +/- 20 v 111 +/- 16 mg/dL). Lactate concentration increased significantly during exercise up to 30 minutes, but at exhaustion only control subjects showed a reduction. No significant difference in free fatty acid (FFA) concentrations was observed between the groups during a 30-minute exercise period; however, at exhaustion levels were significantly higher in control subjects. Prolactin and C-peptide concentrations were significantly lower in diabetic subjects, whereas glucagon concentration was higher. No significant differences between the groups were observed for cortisol and growth hormone (GH) concentrations. We conclude that (1) diabetic subjects show reduced exercise tolerance when no insulin is administered for 12 hours, and (2) exercise to exhaustion reduces serum glucose concentrations in insulin-dependent diabetics.


Clinics | 2017

Aerobic Swim Training Restores Aortic Endothelial Function by Decreasing Superoxide Levels in Spontaneously Hypertensive Rats

Camila Paixão Jordão; Tiago Fernandes; Leonardo Y. Tanaka; Luiz Roberto Grassmann Bechara; Luís Gustavo Oliveira de Sousa; Edilamar Menezes de Oliveira; Paulo Rizzo Ramires

OBJECTIVE: We aimed to determine whether aerobic training decreases superoxide levels, increases nitric oxide levels, and improves endothelium-dependent vasodilation in the aortas of spontaneously hypertensive rats. METHODS: Spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were distributed into 2 groups: sedentary (SHRsd and WKYsd, n=10 each) and swimming-trained (SHRtr, n=10 and WKYtr, n=10, respectively). The trained group participated in training sessions 5 days/week for 1 h/day with an additional work load of 4% of the animal’s body weight. After a 10-week sedentary or aerobic training period, the rats were euthanized. The thoracic aortas were removed to evaluate the vasodilator response to acetylcholine (10-10 to 10-4 M) with or without preincubation with L-NG-nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M) in vitro. The aortic tissue was also used to assess the levels of the endothelial nitric oxide synthase and nicotinamide adenine dinucleotide oxidase subunit isoforms 1 and 4 proteins, as well as the superoxide and nitrite contents. Blood pressure was measured using a computerized tail-cuff system. RESULTS: Aerobic training significantly increased the acetylcholine-induced maximum vasodilation observed in the SHRtr group compared with the SHRsd group (85.9±4.3 vs. 71.6±5.2%). Additionally, in the SHRtr group, superoxide levels were significantly decreased, nitric oxide bioavailability was improved, and the levels of the nicotinamide adenine dinucleotide oxidase subunit isoform 4 protein were decreased compared to the SHRsd group. Moreover, after training, the blood pressure of the SHRtr group decreased compared to the SHRsd group. Exercise training had no effect on the blood pressure of the WKYtr group. CONCLUSIONS: In SHR, aerobic swim training decreased vascular superoxide generation by nicotinamide adenine dinucleotide oxidase subunit isoform 4 and increased nitric oxide bioavailability, thereby improving endothelial function.


Journal of Applied Physiology | 1997

Oral glucose ingestion increases endurance capacity in normal and diabetic (type I) humans

Paulo Rizzo Ramires; Cláudia Lúcia de Moraes Forjaz; Celia Strunz; M. E. R. Silva; J. Diament; W. Nicolau; B. Liberman; Carlos Eduardo Negrão


Journal of Applied Physiology | 1999

Postexercise responses of muscle sympathetic nerve activity and blood flow to hyperinsulinemia in humans

Cláudia Lúcia de Moraes Forjaz; Paulo Rizzo Ramires; Taís Tinucci; Katia Coelho Ortega; Heloísa E. H. Salomão; Edna C. Ignes; Bernardo L. Wajchenberg; Carlos Eduardo Negrão; Décio Mion


European Journal of Applied Physiology | 2008

Moderate exercise training decreases aortic superoxide production in myocardial infarcted rats.

Nelo Eidy Zanchi; Luiz Roberto Grassmann Bechara; Leonardo Y. Tanaka; Victor Debbas; Teresa Bartholomeu; Paulo Rizzo Ramires

Collaboration


Dive into the Paulo Rizzo Ramires's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge