Paulo Vilaça
University of Minho
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paulo Vilaça.
BMC Systems Biology | 2010
Isabel Rocha; Paulo Maia; Pedro Evangelista; Paulo Vilaça; Simão Soares; José P. Pinto; Jens Nielsen; Kiran Raosaheb Patil; E. C. Ferreira; Miguel Rocha
BackgroundOver the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications.ResultsOptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes.OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms.The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph.ConclusionsThe OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community.Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models.
BioSystems | 2011
Paulo Vilaça; Isabel Rocha; Miguel Rocha
BACKGROUND AND SCOPE Recently, a number of methods and tools have been proposed to allow the use of genome-scale metabolic models for the phenotype simulation and optimization of microbial strains, within the field of Metabolic Engineering (ME). One of the limitations of most of these algorithms and tools is the fact that only metabolic information is taken into account, disregarding knowledge on regulatory events. IMPLEMENTATION AND PERFORMANCES This work proposes a novel software tool that implements methods for the phenotype simulation and optimization of microbial strains using integrated models, encompassing both metabolic and regulatory information. This tool is developed as a plug-in that runs over OptFlux, a computational platform that aims to be a reference tool for the ME community. AVAILABILITY The plug-in is made available in the OptFlux web site (www.optflux.org) together with examples and documentation.
Engineering Optimization | 2009
Filipe Pereira e Alvelos; Tak Ming Chan; Paulo Vilaça; Tiago Gomes; Elsa Costa e Silva; J. M. Valério de Carvalho
This article addresses several variants of the two-dimensional bin packing problem. In the most basic version of the problem it is intended to pack a given number of rectangular items with given sizes in rectangular bins in such a way that the number of bins used is minimized. Different heuristic approaches (greedy, local search, and variable neighbourhood descent) are proposed for solving four guillotine two-dimensional bin packing problems. The heuristics are based on the definition of a packing sequence for items and in a set of criteria for packing one item in a current partial solution. Several extensions are introduced to deal with issues pointed out by two furniture companies. Extensive computational results on instances from the literature and from the two furniture companies are reported and compared with optimal solutions, solutions from other five (meta)heuristics and, for a small set of instances, with the ones used in the companies.
data mining in bioinformatics | 2012
Paulo Maia; Paulo Vilaça; Isabel Rocha; Marcellinus Pont; Jean François Tomb; Miguel Rocha
Elementary flux modes (EFMs) have been claimed as one of the most promising approaches for pathway analysis. These are a set of vectors that emerge from the stoichiometric matrix of a biochemical network through the use of convex analysis. The computation of all EFMs of a given network is an NP-hard problem and existing algorithms do not scale well. Moreover, the analysis of results is difficult given the thousands or millions of possible modes generated. In this work, we propose a new plug-in, running on top of the OptFlux Metabolic Engineering workbench (Rocha et al., 2010), whose aims are to ease the analysis of these results and explore synergies among EFM analysis, phenotype simulation and strain optimisation. Two case studies are shown to illustrate the capabilities of the proposed tool.
Computer Methods and Programs in Biomedicine | 2015
Filipe Liu; Paulo Vilaça; Isabel Rocha; Miguel Rocha
Metabolic Engineering (ME) aims to design microbial cell factories towards the production of valuable compounds. In this endeavor, one important task relates to the search for the most suitable heterologous pathway(s) to add to the selected host. Different algorithms have been developed in the past towards this goal, following distinct approaches spanning constraint-based modeling, graph-based methods and knowledge-based systems based on chemical rules. While some of these methods search for pathways optimizing specific objective functions, here the focus will be on methods that address the enumeration of pathways that are able to convert a set of source compounds into desired targets and their posterior evaluation according to different criteria. Two pathway enumeration algorithms based on (hyper)graph-based representations are selected as the most promising ones and are analyzed in more detail: the Solution Structure Generation and the Find Path algorithms. Their capabilities and limitations are evaluated when designing novel heterologous pathways, by applying these methods on three case studies of synthetic ME related to the production of non-native compounds in E. coli and S. cerevisiae: 1-butanol, curcumin and vanillin. Some targeted improvements are implemented, extending both methods to address limitations identified that impair their scalability, improving their ability to extract potential pathways over large-scale databases. In all case-studies, the algorithms were able to find already described pathways for the production of the target compounds, but also alternative pathways that can represent novel ME solutions after further evaluation.
BMC Bioinformatics | 2014
Alberto Noronha; Paulo Vilaça; Miguel Rocha
BackgroundOver the last years, several methods for the phenotype simulation of microorganisms, under specified genetic and environmental conditions have been proposed, in the context of Metabolic Engineering (ME). These methods provided insight on the functioning of microbial metabolism and played a key role in the design of genetic modifications that can lead to strains of industrial interest. On the other hand, in the context of Systems Biology research, biological network visualization has reinforced its role as a core tool in understanding biological processes. However, it has been scarcely used to foster ME related methods, in spite of the acknowledged potential.ResultsIn this work, an open-source software that aims to fill the gap between ME and metabolic network visualization is proposed, in the form of a plugin to the OptFlux ME platform. The framework is based on an abstract layer, where the network is represented as a bipartite graph containing minimal information about the underlying entities and their desired relative placement. The framework provides input/output support for networks specified in standard formats, such as XGMML, SBGN or SBML, providing a connection to genome-scale metabolic models. An user-interface makes it possible to edit, manipulate and query nodes in the network, providing tools to visualize diverse effects, including visual filters and aspect changing (e.g. colors, shapes and sizes). These tools are particularly interesting for ME, since they allow overlaying phenotype simulation results or elementary flux modes over the networks.ConclusionsThe framework and its source code are freely available, together with documentation and other resources, being illustrated with well documented case studies.
IEEE/ACM Transactions on Computational Biology and Bioinformatics | 2017
Oscar Dias; Daniel Gonçalves Gomes; Paulo Vilaça; João Cardoso; Miguel Rocha; E. C. Ferreira; Isabel Rocha
Usually, transport reactions are added to genome-scale metabolic models (GSMMs) based on experimental data and literature. This approach does not allow associating specific genes with transport reactions, which impairs the ability of the model to predict effects of gene deletions. Novel methods for systematic genome-wide transporter functional annotation and their integration into GSMMs are therefore necessary. In this work, an automatic system to detect and classify all potential membrane transport proteins for a given genome and integrate the related reactions into GSMMs is proposed, based on the identification and classification of genes that encode transmembrane proteins. The Transport Reactions Annotation and Generation (TRIAGE) tool identifies the metabolites transported by each transmembrane protein and its transporter family. The localization of the carriers is also predicted and, consequently, their action is confined to a given membrane. The integration of the data provided by TRIAGE with highly curated models allowed the identification of new transport reactions. TRIAGE is included in the new release of merlin, a software tool previously developed by the authors, which expedites the GSMM reconstruction processes.
BMC Systems Biology | 2014
Rafael Carreira; Pedro Evangelista; Paulo Maia; Paulo Vilaça; Marcellinus Pont; Jean-Francois Tomb; Isabel Rocha; Miguel Rocha
BackgroundFlux analysis methods lie at the core of Metabolic Engineering (ME), providing methods for phenotype simulation that allow the determination of flux distributions under different conditions. Although many constraint-based modeling software tools have been developed and published, none provides a free user-friendly application that makes available the full portfolio of flux analysis methods.ResultsThis work presents Constraint-based Flux Analysis (CBFA), an open-source software application for flux analysis in metabolic models that implements several methods for phenotype prediction, allowing users to define constraints associated with measured fluxes and/or flux ratios, together with environmental conditions (e.g. media) and reaction/gene knockouts. CBFA identifies the set of applicable methods based on the constraints defined from user inputs, encompassing algebraic and constraint-based simulation methods. The integration of CBFA within the OptFlux framework for ME enables the utilization of different model formats and standards and the integration with complementary methods for phenotype simulation and visualization of results.ConclusionsA general-purpose and flexible application is proposed that is independent of the origin of the constraints defined for a given simulation. The aim is to provide a simple to use software tool focused on the application of several flux prediction methods.
PACBB | 2013
Alberto Noronha; Paulo Vilaça; Miguel Rocha
In this work, we present a software platform for the visualization of metabolic models, which is implemented as a plug-in for the open-source metabolic engineering (ME) platform OptFlux. The tools provided by this plug-in allow the visualization of the models (or parts of the models) combined with the results from operations applied over these models, mainly regarding phenotype simulation, strain optimization and pathway analysis. The tool provides a generic input/ output framework that can import/ export layouts from different formats used by other tools, namely XGMML and SBML. Thus, this work provides a bridge between network visualization and ME.
bioRxiv | 2018
Christian Lieven; Moritz Emanuel Beber; Brett G. Olivier; Frank Bergmann; Meric Ataman; Parizad Babaei; Jennifer A. Bartell; Lars M. Blank; Siddharth Chauhan; Kevin Correia; Christian Diener; Andreas Dräger; Birgitta E. Ebert; Janaka N. Edirisinghe; José P. Faria; Adam M. Feist; Georgios Fengos; Ronan M. T. Fleming; Beatriz Garćıa-Jiménez; Vassily Hatzimanikatis; Wout van Helvoirt; Christopher S. Henry; Henning Hermjakob; Markus Herrgard; Hyun Uk Kim; Zachary A. King; Jasper J. Koehorst; Steffen Klamt; Edda Klipp; Meiyappan Lakshmanan
Several studies have shown that neither the formal representation nor the functional requirements of genome-scale metabolic models (GEMs) are precisely defined. Without a consistent standard, comparability, reproducibility, and interoperability of models across groups and software tools cannot be guaranteed. Here, we present memote (https://github.com/opencobra/memote) an open-source software containing a community-maintained, standardized set of metabolic model tests. The tests cover a range of aspects from annotations to conceptual integrity and can be extended to include experimental datasets for automatic model validation. In addition to testing a model once, memote can be configured to do so automatically, i.e., while building a GEM. A comprehensive report displays the model’s performance parameters, which supports informed model development and facilitates error detection. Memote provides a measure for model quality that is consistent across reconstruction platforms and analysis software and simplifies collaboration within the community by establishing workflows for publicly hosted and version controlled models.