Paulo Vinícius Soares
Federal University of Uberlandia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paulo Vinícius Soares.
Journal of Prosthetic Dentistry | 2008
Paulo Vinícius Soares; Paulo César Freitas Santos-Filho; Luis Roberto Marcondes Martins; Carlos José Soares
STATEMENT OF PROBLEM Unresolved controversy exists concerning the preferred cavity design and restorative technique used to restore endodontically treated maxillary premolars to improve their resistance to fracture under occlusal load. PURPOSE The purpose of this study was to evaluate the fracture resistance, stress distribution, and cusp deformation of endodontically treated human maxillary premolars restored with different materials. The study is divided into 2 parts. In Part I, fracture resistance and fracture mode were determined. MATERIAL AND METHODS Seventy noncarious human maxillary premolars were selected and divided into 7 groups (n=10). The control group, ST, consisted of sound unprepared teeth. Teeth in the other 6 groups were endodontically treated and each received 1 of 2 cavity preparation designs: MODd, direct mesio-occlusal-distal preparation; MODi, indirect mesio-occlusal-distal preparation. Teeth were restored with 4 types of material: AM, MODd restored with amalgam; CR, MODd restored with composite resin; LPR, MODi restored with laboratory-processed composite resin; and LGC, MODi restored with leucite-reinforced glass ceramic. The fracture resistance (N) was assessed under compressive load in a universal testing machine. The data were analyzed by 1-way ANOVA and the Tukey HSD test (alpha =.05). Fracture modes were recorded based on the degree of tooth structure involvement and restoration damage. RESULTS Statistical analysis showed that the ST group presented the highest fracture resistance values. The restored groups showed significantly higher fracture resistance values compared to the nonrestored groups. The groups restored with adhesive techniques (LPR, CR, and LGC) presented significantly higher fracture resistance values than the group restored with the nonadhesive technique (AM) (P<.001). The catastrophic fractures were prevalent in MODd, MODi, AM, and LPR groups, and less severe fractures were found in ST and LGC groups. For the CR group, there was no prevalent fracture mode. CONCLUSIONS Teeth with the greatest amount of remaining tooth structure and those restored using adhesive technology showed higher fracture resistance values. There was great variation in the type of fracture among groups.
Journal of Prosthetic Dentistry | 2008
Paulo Vinícius Soares; Paulo César Freitas Santos-Filho; Henner Alberto Gomide; Cleudmar Amaral de Araújo; Luis Roberto Marcondes Martins; Carlos José Soares
STATEMENT OF PROBLEM Unresolved controversy exists concerning the preferred cavity design and restorative technique used to restore endodontically treated maxillary premolars to minimize strain and improve stress distribution under occlusal load. PURPOSE The purpose of this study was to analyze the influence of cavity design and restorative material on strain measurement and stress distribution in maxillary premolars under occlusal loading conditions, and correlate these influences with the failure modes analyzed in Part I. MATERIAL AND METHODS For the strain gauge test, 21 additional specimens were prepared as described in Part 1 of this study (n=3). Two strain gauges were fixed on the buccal (B) and palatal (P) cusps of each specimen with cyanoacrylate adhesive. The specimens were submitted to continuous axial compression loading at a speed of 0.5 mm/min, using a 6-mm sphere, to a maximum limit of 150 N in a universal testing machine. Total strain values were obtained by combining the B and P cusp strain values. These values were submitted to 2-way ANOVA and the Dunnet test (alpha=.05). For finite element analyses, 7 numerical 2-D models were generated: MODd, direct mesio-occlusal-distal preparation; MODi, indirect mesio-occlusal-distal preparation; AM, MODd restored with amalgam; CR, MODd restored with composite resin; LPR, MODi restored with laboratory-processed composite resin; and LGC, MODi restored with leucite-reinforced glass ceramic; each corresponding to 1 of the experimental groups tested in Part I of this study. The models were analyzed with finite element software, using the von Mises criteria for stress distribution analysis. RESULTS With the strain gauge test, MODd, MODi, and AM groups showed significantly higher strain values than the CR, LPR, and LGC. Finite element analyses revealed that tooth structure removal and the type of restorative material altered the stress distribution pattern. The MODd, MODi, AM, and LPR models showed higher stress concentration within the tooth structure. CONCLUSIONS The specimens with adhesive restorations were shown to behave in a manner similar to the biomechanical behavior of healthy teeth, while the behavior of those restored with amalgam restorations was more like that observed for teeth with nonrestored cavity preparations. These results directly correlate with the fracture mode results obtained in Part I of this study.
Dental Materials | 2008
Carlos José Soares; Fernanda Ribeiro Santana; Carolina Guimarães Castro; Paulo César Freitas Santos-Filho; Paulo Vinícius Soares; F. Qian; Steven R. Armstrong
OBJECTIVE This study tested the hypothesis that the stress distribution and bond strength of glass posts to intraradicular dentin is influenced by the mechanical testing methodology. METHODS Thirty single rooted endodontically treated teeth were prepared for luting of tapered fiber-glass posts (Reforpost, Angelus, Londrina, PR, Brazil) with a conventional adhesive system and resin luting cement (Adper Scotchbond Multi-purpose, Rely X ARC, 3M ESPE, St. Paul, MN, USA). The teeth were randomly divided (n=10 per group) into micro-push-out (Mpo), hourglass- (Mh) and rectangular stick-shaped (Ms) microtensile testing groups before sectioning each root into five 1-mm-thick specimens. During specimen preparation for microTBS testing 46/50 stick and 4/50 hourglass specimens prematurely failed; therefore, the Ms group could not be included in the mechanical testing. The remaining specimens were tested at 0.5 mm/min until bond failure. Stress distribution within each specimen type for the three mechanical test methods was analyzed by finite element analysis (FEA). Qualitative analyses were carried out through Von Mises, XY and Sy criterion. RESULTS Mpo and Mh had a mean microTBS of 11.89+/-6.55 and 14.98+/-12.72 MPa, respectively, which was not significantly different (p=0.1311). The push-out test demonstrated a more homogenous stress distribution by FEA and less variability in mechanical testing. SIGNIFICANCE Therefore, the recommended testing method for determining the bond strength of glass posts to intraradicular dentin is by Mpo.
Journal of Endodontics | 2008
Carlos José Soares; Paulo Vinícius Soares; Paulo César Freitas Santos-Filho; Carolina Guimarães Castro; Denildo de Magalhães; Antheunis Versluis
The aim of this study was to evaluate the effect of cavity design and glass fiber posts on stress distributions and fracture resistance of endodontically treated premolars. Fifty extracted intact mandibular premolars were divided into 5 groups (n = 10): ST, sound teeth (control); MOD, mesio-occlusal-distal preparation + endodontic treatment (ET) + composite resin restoration (CR); MODP, mesio-occlusal-distal + ET + glass fiber post + CR; MOD2/3, mesio-occlusal-distal + two thirds occlusal-cervical cusp loss + ET + CR; and MODP2/3, mesio-occlusal-distal + two thirds cusp loss + ET + glass fiber post + CR. The specimens were loaded on a cusp slope until fracture. Fracture patterns were classified according to four failure types. Stress distributions were evaluated for each group in a two-dimensional finite element analysis. The fracture resistance of the MODP, MOD2/3, and MODP2/3 groups was significantly lower than the ST and MOD groups (p < 0.05). The loss of dental structure and the presence of fiber post restoration reduced fracture resistance and created higher stress concentrations in the tooth-restoration complex. However, when there was a large loss of dental structure (MODP2/3), the post reduced the incidence of catastrophic fracture types.
Journal of Endodontics | 2011
Murilo de Sousa Menezes; Ellyne Cavalcanti Queiroz; Paulo Vinícius Soares; André Luis Faria-e-Silva; Carlos José Soares; Luis Roberto Marcondes Martins
INTRODUCTION Etching is necessary to expose the fibers and enable both mechanical and chemical bonding of the resin core to the fiber post. This study evaluated the effect of concentration and application time of hydrogen peroxide on the surface topography and bond strength of glass fiber posts to resin cores. METHODS Fiber posts were etched with 24% or 50% hydrogen peroxide for 1, 5, or 10 min (n = 10). Posts without any treatment were used as a control. After etching, the posts were silanated and adhesive resin was applied. The posts were positioned into a mold to allow a self-cured resin core to be inserted. The post/resin assembly was serially sectioned into five beams that were subjected to a tensile bond strength test. Data were subjected to two-way ANOVA and Tukey test (α = 0.05). The surface topography was analyzed using scanning electronic microscopy. RESULTS Non-etched post presents a relatively smooth surface without fiber exposure. Application of hydrogen peroxide increased the surface roughness and exposed the fibers. All experimental conditions yielded similar bond strength values that were higher than those obtained in the control group. CONCLUSION Both 24% and 50% hydrogen peroxide exposure increased the bond strength of resin to the posts, irrespective of the application time.
Journal of Prosthodontics | 2008
Paulo Vinícius Soares; Paulo César Freitas Santos-Filho; Ellyne Cavalcanti Queiroz; Thiago Caixeta de Araujo; Roberto Elias Campos; Cleudmar Amaral de Araújo; Carlos José Soares
PURPOSE The aim of this study was to evaluate the effect of endodontic and restorative treatment on the fracture resistance of posterior teeth. MATERIALS AND METHODS Fifty intact premolars were selected and randomly placed into five groups (n = 10): G1, intact teeth (control); G2, mesial-occlusal-distal (MOD) preparation; G3, MOD preparation restored with composite resin (Z-250, 3M ESPE); G4, MOD preparation and endodontic treatment; and G5, MOD preparation, endodontic treatment, and composite resin restoration. The specimens were submitted to an axial compression load in a mechanical test machine (EMIC), at a speed of 0.5 mm/min. Fracture patterns were analyzed at four levels. Five 2D numerical models were created by Ansys 10.0 for finite element analysis (FEA). RESULTS Mean values of compressive strength for all groups were (Kgf): G1 (83.6 +/- 25.4); G2 (52.7 +/- 20.2); G3 (82.1 +/- 24.9); G4 (40.2 +/- 14.2); G5 (64.5 +/- 18.1). Statistical analysis (ANOVA and Tukeys test) showed that fracture resistance of G1 was significantly higher than that of G5, G2, and G4. Resistance of G3 was also higher than that of G2 and G4. Results showed that the tooth resistance is completely maintained when MOD preparation is restored with composite resin and partially recovered when MOD preparation associated with an endodontic access is restored in the same way. The endodontic treatment and composite resin restoration influenced stress distribution in the dental structure. CONCLUSIONS Composite resin restoration plays an important role in recovering tooth strength. With regard to fracture mode, restoration and endodontic treatment increased the incidence of periodontal involvement, which was demonstrated by association with the finite element mechanical test method.
Journal of Dental Research | 2010
Carlos José Soares; C.G. Castro; N.A. Neiva; Paulo Vinícius Soares; Paulo César Freitas Santos-Filho; Lucas Zago Naves; Patricia N.R. Pereira
The effect of gamma irradiation therapy on the ultimate tensile strength (UTS) of enamel and dentin in relation to prism orientation, dentin tubule orientation, and location is unknown. It was hypothesized that tubule and prism orientation, location, and irradiation have an effect on the UTS of dental structures. Forty human third molars were used, half of which were subjected to 60 Gy of gamma irradiation, in daily increments of 2 Gy. The specimens were evaluated by microtensile testing. Results showed that irradiation treatment significantly decreased the UTS of coronal and radicular dentin and of enamel, regardless of tubule or prism orientation. With or without irradiation, enamel was significantly stronger when tested parallel to its prismatic orientation. Coronal and radicular dentin of non-irradiated specimens presented significantly higher UTS when tested perpendicularly to tubule orientation. However, when the teeth were irradiated, the influence of tubule orientation disappeared, demonstrating that irradiation is more harmful to organic components.
Clinical Oral Investigations | 2006
Rodrigo Borges Fonseca; Carolina Assaf Branco; Paulo Vinícius Soares; Lourenço Correr-Sobrinho; Francisco Haiter-Neto; Alfredo Júlio Fernandes-Neto; Carlos José Soares
The aim of this study was to determine the radiodensity of base, liner and luting dental materials and to compare them with human enamel and dentin. Four classes of materials were examined: conventional glass ionomers (CG)—Vitro Cem, Ketac Bond, Vidrion F, Vidrion C; resin-modified glass ionomers (RMGI)—Fuji II LC, Vitrebond; resinous cement (RC)—Rely-X ARC; and zinc phosphate cement (ZP)—Cimento LS. Five 2-mm-thick standard samples of each material and five 2-mm-thick enamel and dentin samples were produced. An aluminum step wedge served as control. Samples were positioned over a phosphor plate of Digora digital system, exposed to X-ray, and the radiodensity obtained in the software Digora for Windows 2.0. Data were submitted to Kruskal–Wallis and Dunnett multiple comparisons test (α=0.05). According to statistical analysis, the following sequence in degree of radiodensity could be seen among the groups: Cimento LS (ZP) > Vitro Cem (CG) = Fuji II LC (RMGI) = Rely-X ARC (RC) = Vitrebond (RMGI) > Ketac Bond (CG) > enamel = Vidrion F (CG) > Vidrion C (CG) = dentin. The presence of radiopaque fillers such as zinc, strontium, zirconium, barium, and lanthanium rather than material type seems to be the most important factor when analyzing material radiodensity. Almost all investigated materials presented an accepted radiodensity.
Journal of Endodontics | 2014
Paulo César Freitas Santos-Filho; Crisnicaw Veríssimo; Paulo Vinícius Soares; Rebeca Carniello Saltarelo; Carlos José Soares; Luis Roberto Marcondes Martins
INTRODUCTION The aim of this study was to evaluate the influence of post system, length, and ferrule on biomechanical behavior of endodontically treated anterior teeth. METHODS The investigation was conducted by using laboratory tests and 3-dimensional finite element analysis. Eighty bovine incisors were selected and divided into 8 treatment groups (n = 10) with absence of ferrule and 2.0 mm of ferrule, restored with glass fiber post or cast post and core, and 12.0 and 7.0 mm of post length. The specimens were loaded at 135° angle, and the strain was measured by using strain gauge method. Specimens were subsequently loaded until fracture. Strain and fracture resistance results were analyzed by 3-way analysis of variance and Tukey honestly significant difference tests (α = 0.05). Three-dimensional models of a maxillary central incisor were generated with the same treatment variations used in laboratory tests. Each model was subjected to 100 N oblique loads. Results were evaluated by von Mises criterion. RESULTS Ferrule was a determining factor in the strain, fracture resistance, and fracture pattern. In the absence of ferrule, the use of fiberglass posts represents a conservative choice from the standpoint of the fracture patterns observed. The length of 7 mm for cast post and cores produced high rates of root fractures. Finite element analysis showed that glass fiber post showed homogeneous stress distribution, whereas cast post showed stress concentration into root canal. CONCLUSIONS Post length influenced only the cast post strain and stress distribution. The ferrule groups always showed more satisfactory stress distribution and fracture resistance.
Journal of Adhesive Dentistry | 2010
Castellan Cs; Paulo César Freitas Santos-Filho; Paulo Vinícius Soares; Carlos José Soares; Cardoso Pe
PURPOSE the aim of this study was to evaluate the ability of bond strength tests to accurately measure the bond strength of fiber posts luted into root canals. MATERIALS AND METHODS the test methods studied were hourglass microtensile (HM), push-out (PS), modified pushout (MP), and pull-out (PL). The evaluated parameters were: bond strength values, reliability (using Weibull analysis), failure mode (using confocal microscopy), and stress distribution (using finite element analysis). Forty human intact single-rooted and endodontically treated teeth were divided into four groups. Each group was assigned one of the test methods. The samples in the HM and PS groups were 1.0 ± 0.1 mm thick; the HM samples were hourglass shaped and the PS samples were disk shaped. For the PL and MP groups, each 1-mm dentin slice was luted with a fiber post piece. Three-dimensional models of each group were made and stress was analyzed based on Von Mises criteria. RESULTS PL provided the highest values of bond strength, followed by MP, both of which also had greater amounts of adhesive failures. PS showed the highest frequency of cohesive failures. MP showed a more homogeneous stress distribution and a higher Weibull modulus. CONCLUSION the specimen design directly influences the biomechanical behavior of bond strength tests.