Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paushali Mukherjee is active.

Publication


Featured researches published by Paushali Mukherjee.


Journal of Cell Science | 2004

The pathway for MHCII-mediated presentation of endogenous proteins involves peptide transport to the endo-lysosomal compartment

Aadish Dani; Ashutosh Chaudhry; Paushali Mukherjee; Deepa Rajagopal; Sumeena Bhatia; Anna George; Vineeta Bal; Satyajit Rath; Satyajit Mayor

Antigen-presenting cells (APCs) are expected to present peptides from endocytosed proteins via major histocompatibility complex (MHC) class II (MHCII) molecules to T cells. However, a large proportion of peptides purified from MHCII molecules are derived from cytosolic self-proteins making the pathway of cytosolic peptide loading onto MHCII of critical relevance in the regulation of immune self-tolerance. We show that peptides derived from cytoplasmic proteins either introduced or expressed in the cytoplasm are first detectable as MHCII-peptide complexes in LAMP-1+ lysosomes, prior to their delivery to the cell surface. These peptide-MHC complexes are formed in a variety of APCs, including peritoneal macrophages, dendritic cells, and B cells, and are able to activate T cells. This process requires invariant chain (Ii)-dependent sorting of MHCII to the lysosome and the activity of the molecular chaperone H-2M. This pathway is independent of the ER resident peptide transporter complex TAP and does not take place by cross-presentation from neighbouring cells. In conjunction with our earlier results showing that these peptides are derived by cytosolic processing via the proteasome, these observations provide evidence for a ubiquitous route for peptide transport into the lysosome for the efficient presentation of endogenous and cytoplasmic proteins to CD4 T cells.


Journal of Immunology | 2001

Efficient Presentation of Both Cytosolic and Endogenous Transmembrane Protein Antigens on MHC Class II Is Dependent on Cytoplasmic Proteolysis

Paushali Mukherjee; Aadish Dani; Sumeena Bhatia; Nagendra Singh; Alexander Y. Rudensky; Anna George; Vineeta Bal; Satyajit Mayor; Satyajit Rath

Peptides from extracellular proteins presented on MHC class II are mostly generated and loaded in endolysosomal compartments, but the major pathways responsible for loading peptides from APC-endogenous sources on MHC class II are as yet unclear. In this study, we show that MHC class II molecules present peptides from proteins such as OVA or conalbumin introduced into the cytoplasm by hyperosmotic pinosome lysis, with efficiencies comparable to their presentation via extracellular fluid-phase endocytosis. This cytosolic presentation pathway is sensitive to proteasomal inhibitors, whereas the presentation of exogenous Ags taken up by endocytosis is not. Inhibitors of nonproteasomal cytosolic proteases can also inhibit MHC class II-restricted presentation of cytosolically delivered protein, without inhibiting MHC class I-restricted presentation from the same protein. Cytosolic processing of a soluble fusion protein containing the peptide epitope I-Eα52–68 yields an epitope that is similar to the one generated during constitutive presentation of I-Eα as an endogenous transmembrane protein, but is subtly different from the one generated in the exogenous pathway. Constitutive MHC class II-mediated presentation of the endogenous transmembrane protein I-Eα is also specifically inhibited over time by inhibitors of cytosolic proteolysis. Thus, Ag processing in the cytoplasm appears to be essential for the efficient presentation of endogenous proteins, even transmembrane ones, on MHC class II, and the proteolytic pathways involved may differ from those used for MHC class I-mediated presentation.


Infection and Immunity | 2004

Comparison of Immunogenicities of Recombinant Plasmodium vivax Merozoite Surface Protein 1 19- and 42-Kilodalton Fragments Expressed in Escherichia coli

Suraksha Sachdeva; Gul Ahmad; Pawan Malhotra; Paushali Mukherjee; Virander S. Chauhan

ABSTRACT The 42- and 19-kDa C-terminal fragments of merozoite surface protein 1 (MSP-142 and MSP-119, respectively) are both promising blood-stage vaccine candidate antigens. At present, it is not clear which of the two antigens will be more suitable for inclusion in a cocktail malaria vaccine. In the present study, we expressed the two C-terminal fragments of Plasmodium vivax MSP-1 (PvMSP-1) in an Escherichia coli expression system and purified them by using a rapid two-step protocol. Both of the products were recognized by monoclonal antibodies against PvMSP-1 as well as by immune sera from several individuals exposed to P. vivax. We analyzed and compared the immunological responses to recombinant PvMSP-119 and PvMSP-142 in mice by using six different adjuvant formulations. Moderate to high antibody responses were observed with both of the antigens in different adjuvant formulations. Surprisingly, alum, which is generally considered to be a poor adjuvant for recombinant malaria antigens, was found to be as good an adjuvant as Montanide ISA 720, ASO2A, and other adjuvant formulations. Most adjuvant formulations induced high levels of immunoglobulin G1 (IgG1), followed by IgG3 and IgG2. Lymphocytes from animals in the PvMSP-142- and PvMSP-119-immunized groups showed proliferative responses upon stimulation with the respective antigens, and high levels of interleukin-4 (IL-4), IL-5, and gamma interferon were detected in the culture supernatants. Immunodepletion studies with sera from mice immunized with these two antigens showed that while immunization with PvMSP-142 does produce a PvMSP-119-specific response, a substantial portion is also focused on structures in PvMSP-142 not represented by the epidermal growth factor-like domains of PvMSP-119. These findings may have implications for the design of MSP-1-based vaccine constructs.


Molecular & Cellular Proteomics | 2009

Proteome Analysis of Plasmodium falciparum Extracellular Secretory Antigens at Asexual Blood Stages Reveals a Cohort of Proteins with Possible Roles in Immune Modulation and Signaling

Meha Singh; Paushali Mukherjee; Krishnamoorthy Narayanasamy; Reena Arora; Som Dutta Sen; Shashank Gupta; Krishnamurthy Natarajan; Pawan Malhotra

The highly co-evolved relationship of parasites and their hosts appears to include modulation of host immune signals, although the molecular mechanisms involved in the host-parasite interplay remain poorly understood. Characterization of these key genes and their cognate proteins related to the host-parasite interplay should lead to a better understanding of this intriguing biological phenomenon. The malaria agent Plasmodium falciparum is predicted to export a cohort of several hundred proteins to remodel the host erythrocyte. However, proteins actively exported by the asexual intracellular parasite beyond the host red blood cell membrane (before merozoite egress) have been poorly investigated so far. Here we used two complementary methodologies, two-dimensional gel electrophoresis/MS and LC-MS/MS, to examine the extracellular secreted antigens at asexual blood stages of P. falciparum. We identified 27 novel antigens exported by P. falciparum in the culture medium of which some showed clustering with highly polymorphic genes on chromosomes, suggesting that they may encode putative antigenic determinants of the parasite. Immunolocalization of four novel secreted proteins confirmed their export beyond the infected red blood cell membrane. Of these, preliminary functional characterization of two novel (Sel1 repeat-containing) parasite proteins, PfSEL1 and PfSEL2 revealed that they down-regulate expression of cell surface Notch signaling molecules in host cells. Also a novel protein kinase (PfEK) and a novel protein phosphatase (PfEP) were found to, respectively, phosphorylate/dephosphorylate parasite-specific proteins in the extracellular culture supernatant. Our study thus sheds new light on malaria parasite extracellular secreted antigens of which some may be essential for parasite development and could constitute promising new drug targets.


Journal of Immunology | 2003

Mimicry of native peptide antigens by the corresponding retro-inverso analogs is dependent on their intrinsic structure and interaction propensities.

Deepak T. Nair; Kanwal J. Kaur; Kavita Singh; Paushali Mukherjee; Deepa Rajagopal; Anna George; Vineeta Bal; Satyajit Rath; Kanury V. S. Rao; Dinakar M. Salunke

Retro-inverso (ri) analogs of model T cell and B cell epitopes were predictively designed as mimics and then assayed for activity to understand the basis of functional ri-antigenic peptide mimicry. ri versions of two MHC class I binding peptide epitopes, one from a vesicular stomatitis virus glycoprotein (VSVp) and another from OVA (OVAp), exhibit structural as well as functional mimicry of their native counterparts. The two ri peptides exhibit conformational plasticity and they bind to MHC class I (H-2Kb) similar to their native counterparts both in silico and in vivo. In fact, ri-OVAp is also presented to an OVAp-specific T cell line in a mode similar to native OVAp. In contrast, the ri version of an immunodominant B cell peptide epitope from a hepatitis B virus protein, PS1, exhibits no structural or functional correlation with its native counterpart. PS1 and its ri analog do not exhibit similar conformational propensities. PS1 is less flexible relative to its ri version. These observed structure-function relationships of the ri-peptide epitopes are consistent with the differences in recognition properties between peptide-MHC vs peptide-Ab binding where, while the recognition of the epitope by MHC is pattern based, the exquisitely specific recognition of Ag by Ab arises from the high complementarity between the Ag and the binding site of the Ab. It is evident that the correlation of conformational and interaction propensities of native l-peptides and their ri counterparts depends both on their inherent structural properties and on their mode of recognition.


Infection and Immunity | 2010

Plasmodium falciparum Merozoite Surface Protein 1 (MSP-1)-MSP-3 Chimeric Protein: Immunogenicity Determined with Human-Compatible Adjuvants and Induction of Protective Immune Response

Suman Mazumdar; Paushali Mukherjee; Syed Shams Yazdani; Swatantra Kumar Jain; Asif Mohmmed; Virander S. Chauhan

ABSTRACT A chimeric gene, MSP-Fu24, was constructed by genetically coupling immunodominant, conserved regions of the two leading malaria vaccine candidates, Plasmodium falciparum merozoite surface protein 1 (C-terminal 19-kDa region [PfMSP-119]) and merozoite surface protein 3 (11-kDa conserved region [PfMSP-311]). The recombinant MSP-Fu24 protein was produced in Escherichia coli cells and purified to homogeneity by a two-step purification process with a yield of ∼30 mg/liter. Analyses of conformational properties of MSP-Fu24 using PfMSP-119-specific monoclonal antibody showed that the conformational epitopes of PfMSP-119 that may be critical for the generation of the antiparasitic immune response remained intact in the fusion protein. Recombinant MSP-Fu24 was highly immunogenic in mice and in rabbits when formulated with two different human-compatible adjuvants and induced an immune response against both PfMSP-119 and PfMSP-311. Purified anti-MSP-Fu24 antibodies showed invasion inhibition of P. falciparum 3D7 and FCR parasites, and this effect was found to be dependent on antibodies specific for the PfMSP-119 component. The protective potential of MSP-Fu24 was demonstrated by in vitro parasite growth inhibition using an antibody-dependent cell inhibition (ADCI) assay with anti-MSP-Fu24 antibodies. Overall, the antiparasitic activity was mediated by a combination of growth-inhibitory antibodies generated by both the PfMSP-119 and PfMSP-311 components of the MSP-Fu24 protein. The antiparasitic activities elicited by anti-MSP-Fu24 antibodies were comparable to those elicited by antibodies generated with immunization with a physical mixture of two component antigens, PfMSP-119 and PfMSP-311. The fusion protein induces a protective immune response with human-compatible adjuvants and may form a part of a multicomponent malaria vaccine.


Journal of Leukocyte Biology | 2008

Plasmodium falciparum-free merozoites and infected RBCs distinctly affect soluble CD40 ligand-mediated maturation of immature monocyte-derived dendritic cells

Paushali Mukherjee; Virander S. Chauhan

Free plasmodium merozoites released from the parasitized hepatocytes and erythrocytes represent a transitory, extracellular stage in its mammalian host. In this study, we compared the effect of Plasmodium falciparum‐free merozoites with infected RBCs (iRBCs) on the maturation of human monocyte‐derived dendritic cells (DCs) in vitro. Phagocytosed‐free merozoites prevented soluble CD40 ligand (sCD40L)‐induced, phenotypic maturation of DCs and secretion of IL‐12p70 but enhanced IL‐10 production and primed, naive CD4+ cells to produce a high level of IL‐10 compared with IFN‐γ. Free merozoites augmented sCD40L‐induced ERK1/2 activation, and inhibition of ERK1/2 with its inhibitor PD98059 markedly abrogated IL‐10 production and rescued IL‐12 production. Therefore, the molecular mechanisms by which free merozoites antagonized sCD40L‐induced DC maturation appeared to involve the activation of the ERK pathway. In contrast, phagocytosed iRBCs by itself induced DCs to semi‐maturation, responded to CD40 signaling by maturing and secreting increased levels of TNF‐α, IL‐6, and also IL‐12p70, and led to a pronounced, proinflammatory response by the allogenic CD4+ T cells. iRBCs regulate CD40‐induced p38MAPK. Studies using inhibitors selective for p38MAPK (SB203580) showed that p38MAPK played an essential role in the maturation and function of DCs. Our results reveal the ability of free merozoites and iRBCs to distinctly alter the sCD40L‐induced DC functioning by regulating the activation of the MAPK pathway that can inactivate or exacerbate immune responses to promote their survival and the development of parasite‐specific pathologies.


PLOS ONE | 2015

Phase I Clinical Trial of a Recombinant Blood Stage Vaccine Candidate for Plasmodium falciparum Malaria Based on MSP1 and EBA175

Chetan E. Chitnis; Paushali Mukherjee; Shantanu Mehta; Syed Shams Yazdani; Shikha Dhawan; Ahmad Rushdi Shakri; Rukmini Bhardwaj; Puneet Kumar Gupta; Dhiraj Hans; Suman Mazumdar; Bijender Singh; Sanjeev Kumar; Gaurav Pandey; Varsha Parulekar; Nathalie Imbault; Preethi Shivyogi; Girish Godbole; Krishna Mohan; Odile Leroy; Kavita Singh; Virander S. Chauhan

Background A phase I randomised, controlled, single blind, dose escalation trial was conducted to evaluate safety and immunogenicity of JAIVAC-1, a recombinant blood stage vaccine candidate against Plasmodium falciparum malaria, composed of a physical mixture of two recombinant proteins, PfMSP-119, the 19 kD conserved, C-terminal region of PfMSP-1 and PfF2 the receptor-binding F2 domain of EBA175. Method Healthy malaria naïve Indian male subjects aged 18–45 years were recruited from the volunteer database of study site. Fifteen subjects in each cohort, randomised in a ratio of 2:1 and meeting the protocol specific eligibility criteria, were vaccinated either with three doses (10μg, 25μg and 50μg of each antigen) of JAIVAC-1 formulated with adjuvant Montanide ISA 720 or with standard dosage of Hepatitis B vaccine. Each subject received the assigned vaccine in the deltoid muscle of the upper arms on Day 0, Day 28 and Day 180. Results JAIVAC-1 was well tolerated and no serious adverse event was observed. All JAIVAC-1 subjects sero-converted for PfF2 but elicited poor immune response to PfMSP-119. Dose-response relationship was observed between vaccine dose of PfF2 and antibody response. The antibodies against PfF2 were predominantly of IgG1 and IgG3 isotype. Sera from JAIVAC-1 subjects reacted with late schizonts in a punctate pattern in immunofluorescence assays. Purified IgG from JAIVAC-1 sera displayed significant growth inhibitory activity against Plasmodium falciparum CAMP strain. Conclusion Antigen PfF2 should be retained as a component of a recombinant malaria vaccine but PfMSP-119 construct needs to be optimised to improve its immunogenicity. Trial Registration Clinical Trial Registry, India CTRI/2010/091/000301


Clinical and Vaccine Immunology | 2014

Production and preclinical evaluation of Plasmodium falciparum MSP-119 and MSP-311 chimeric protein, PfMSP-Fu24.

Puneet Kumar Gupta; Paushali Mukherjee; Shikha Dhawan; Alok K. Pandey; Suman Mazumdar; Deepak Gaur; Shilpi Jain; Virander S. Chauhan

ABSTRACT A Plasmodium falciparum chimeric protein, PfMSP-Fu24, was constructed by genetically coupling immunodominant, conserved regions of two merozoite surface proteins, the 19-kDa region C-terminal region of merozoite surface protein 1 (PfMSP-119) and an 11-kDa conserved region of merozoite surface protein 3 (PfMSP-311), to augment the immunogenicity potential of these blood-stage malaria vaccine candidates. Here we describe an improved, efficient, and scalable process to produce high-quality PfMSP-Fu24. The chimeric protein was produced in Escherichia coli SHuffle T7 Express lysY cells that express disulfide isomerase DsbC. A two-step purification process comprising metal affinity followed by cation exchange chromatography was developed, and we were able to obtain PfMSP-Fu24 with purity above 99% and with a considerable yield of 23 mg/liter. Immunogenicity of PfMSP-Fu24 formulated with several adjuvants, including Adjuplex, Alhydrogel, Adjuphos, Alhydrogel plus glucopyranosyl lipid adjuvant, aqueous (GLA-AF), Adjuphos+GLA-AF, glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE), and Freunds adjuvant, was evaluated. PfMSP-Fu24 formulated with GLA-SE and Freunds adjuvant in mice and with Alhydrogel and Freunds adjuvant in rabbits produced high titers of PfMSP-119 and PfMSP-311-specific functional antibodies. Some of the adjuvant formulations induced inhibitory antibody responses and inhibited in vitro growth of P. falciparum parasites in the presence as well as in the absence of human monocytes. These results suggest that PfMSP-Fu24 can form a constituent of a multistage malaria vaccine.


Molecular and Biochemical Parasitology | 2013

Proteolytic activity of Plasmodium falciparum subtilisin-like protease 3 on parasite profilin, a multifunctional protein.

Asrar Alam; Raj K. Bhatnagar; Udbhav Relan; Paushali Mukherjee; Virander S. Chauhan

Subtilisin-like proteases of malaria parasite Plasmodium falciparum (PfSUB1, 2 and 3) are expressed at late asexual blood stages. PfSUB1 and 2 are considered important drug targets due to their essentiality for parasite blood stages and role in merozoite egress and invasion of erythrocytes. We have earlier shown the in vitro serine protease activity of PfSUB3 and its localization at asexual blood stages. In this study, we attempted to identify the biological substrate(s) of PfSUB3 and found parasite profilin (PfPRF) as a substrate of the protease. Eukaryotic profilins are multifunctional proteins with primary role in regulation of actin filament assembly. PfPRF possesses biochemical features of eukaryotic profilins and its rodent ortholog is essential in blood stages. Profilin from related apicomplexan parasite Toxoplasma gondii (TgPRF) is known to be involved in parasite motility, host cell invasion, active egress from host cell, immune evasion and virulence in mice. In this study, mature PfSUB3 proteolysed recombinant PfPRF in a dose-dependent manner in in vitro assays. Recombinant PfPRF was assessed for its proinflammatory activity and found to induce high level of TNF-α and low but significant level of IL-12 from mouse bone marrow-derived dendritic cells. Proteolysis of PfPRF by PfSUB3 is suggestive of the probable role of the protease in the processes of motility, virulence and immune evasion.

Collaboration


Dive into the Paushali Mukherjee's collaboration.

Top Co-Authors

Avatar

Virander S. Chauhan

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Ahmad Rushdi Shakri

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Syed Shams Yazdani

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suman Mazumdar

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Dhiraj Hans

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Pawan Malhotra

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Puneet Kumar Gupta

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Rukmini Bhardwaj

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge