Pavel Dolezal
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pavel Dolezal.
Nature | 2004
Ivan Hrdy; Robert P. Hirt; Pavel Dolezal; Lucie Bardonová; Peter G. Foster; Jan Tachezy; T. Martin Embley
Hydrogenosomes are double-membraned ATP-producing and hydrogen-producing organelles of diverse anaerobic eukaryotes. In some versions of endosymbiotic theory they are suggested to be homologues of mitochondria, but alternative views suggest they arose from an anaerobic bacterium that was distinct from the mitochondrial endosymbiont. Here we show that the 51-kDa and 24-kDa subunits of the NADH dehydrogenase module in complex I, the first step in the mitochondrial respiratory chain, are active in hydrogenosomes of Trichomonas vaginalis. Like mitochondrial NADH dehydrogenase, the purified Trichomonas enzyme can reduce a variety of electron carriers including ubiquinone, but unlike the mitochondrial enzyme it can also reduce ferredoxin, the electron carrier used for hydrogen production. The presence of NADH dehydrogenase solves the long-standing conundrum of how hydrogenosomes regenerate NAD+ after malate oxidation. Phylogenetic analyses show that the Trichomonas 51-kDa homologue shares common ancestry with the mitochondrial enzyme. Recruitment of complex I subunits into a H2-producing pathway provides evidence that mitochondria and hydrogenosomes are aerobic and anaerobic homologues of the same endosymbiotically derived organelle.
Molecular Cell | 2011
Natalia Gebert; Michael Gebert; Silke Oeljeklaus; Karina von der Malsburg; David A. Stroud; Bogusz Kulawiak; Christophe Wirth; René P. Zahedi; Pavel Dolezal; Sebastian Wiese; Oliver Simon; Agnes Schulze-Specking; Kaye N. Truscott; Albert Sickmann; Peter Rehling; Bernard Guiard; Carola Hunte; Bettina Warscheid; Martin van der Laan; Nikolaus Pfanner; Nils Wiedemann
The mitochondrial inner membrane harbors the complexes of the respiratory chain and translocase complexes for precursor proteins. We have identified a further subunit of the carrier translocase (TIM22 complex) that surprisingly is identical to subunit 3 of respiratory complex II, succinate dehydrogenase (Sdh3). The membrane-integral protein Sdh3 plays specific functions in electron transfer in complex II. We show by genetic and biochemical approaches that Sdh3 also plays specific functions in the TIM22 complex. Sdh3 forms a subcomplex with Tim18 and is involved in biogenesis and assembly of the membrane-integral subunits of the TIM22 complex. We conclude that the assembly of Sdh3 with different partner proteins, Sdh4 and Tim18, recruits it to two different mitochondrial membrane complexes with functions in bioenergetics and protein biogenesis, respectively.
Fems Microbiology Reviews | 2008
Xenia Gatsos; Andrew J. Perry; Khatira Anwari; Pavel Dolezal; Peter Wolynec; Vladimir A. Likić; Anthony W. Purcell; Susan K. Buchanan; Trevor Lithgow
The assembly of β-barrel proteins into membranes is a fundamental process that is essential in Gram-negative bacteria, mitochondria and plastids. Our understanding of the mechanism of β-barrel assembly is progressing from studies carried out in Escherichia coli and Neisseria meningitidis. Comparative sequence analysis suggests that while many components mediating β-barrel protein assembly are conserved in all groups of bacteria with outer membranes, some components are notably absent. The Alphaproteobacteria in particular seem prone to gene loss and show the presence or absence of specific components mediating the assembly of β-barrels: some components of the pathway appear to be missing from whole groups of bacteria (e.g. Skp, YfgL and NlpB), other proteins are conserved but are missing characteristic domains (e.g. SurA). This comparative analysis is also revealing important structural signatures that are vague unless multiple members from a protein family are considered as a group (e.g. tetratricopeptide repeat (TPR) motifs in YfiO, β-propeller signatures in YfgL). Given that the process of the β-barrel assembly is conserved, analysis of outer membrane biogenesis in Alphaproteobacteria, the bacterial group that gave rise to mitochondria, also promises insight into the assembly of β-barrel proteins in eukaryotes.
PLOS Pathogens | 2010
Pavel Dolezal; Michael J. Dagley; Maya Kono; Peter Wolynec; Vladimir A. Likić; Jung Hock Foo; Miroslava Šedinová; Jan Tachezy; Anna Bachmann; Iris Bruchhaus; Trevor Lithgow
Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica.
Molecular Biology and Evolution | 2009
Michael J. Dagley; Pavel Dolezal; Vladimir A. Likić; Ondrej Smid; Anthony W. Purcell; Susan K. Buchanan; Jan Tachezy; Trevor Lithgow
The identification of mitosomes in Giardia generated significant debate on the evolutionary origin of these organelles, whether they were highly reduced mitochondria or the product of a unique endosymbiotic event in an amitochondrial organism. As the protein import pathway is a defining characteristic of mitochondria, we sought to discover a TOM (translocase in the outer mitochondrial membrane) complex in Giardia. A Hidden Markov model search of the Giardia genome identified a Tom40 homologous sequence (GiTom40), where Tom40 is the protein translocation channel of the TOM complex. The GiTom40 protein is located in the membrane of mitosomes in a approximately 200-kDa TOM complex. As Tom40 was derived in the development of mitochondria to serve as the protein import channel in the outer membrane, its presence in Giardia evidences the mitochondrial ancestry of mitosomes.
Eukaryotic Cell | 2006
Simone Pütz; Pavel Dolezal; Gabriel Gelius-Dietrich; Lenka Bohacova; Jan Tachezy; Katrin Henze
ABSTRACT Assembly of active Fe-hydrogenase in the chloroplasts of the green alga Chlamydomonas reinhardtii requires auxiliary maturases, the S-adenosylmethionine-dependent enzymes HydG and HydE and the GTPase HydF. Genes encoding homologous maturases had been found in the genomes of all eubacteria that contain Fe-hydrogenase genes but not yet in any other eukaryote. By means of proteomic analysis, we identified a homologue of HydG in the hydrogenosomes, mitochondrion-related organelles that produce hydrogen under anaerobiosis by the activity of Fe-hydrogenase, in the pathogenic protist Trichomonas vaginalis. Genes encoding two other components of the Hyd system, HydE and HydF, were found in the T. vaginalis genome database. Overexpression of HydG, HydE, and HydF in trichomonads showed that all three proteins are specifically targeted to the hydrogenosomes, the site of Fe-hydrogenase maturation. The results of Neighbor-Net analyses of sequence similarities are consistent with a common eubacterial ancestor of HydG, HydE, and HydF in T. vaginalis and C. reinhardtii, supporting a monophyletic origin of Fe-hydrogenase maturases in the two eukaryotes. Although Fe-hydrogenases exist in only a few eukaryotes, related Narf proteins with different cellular functions are widely distributed. Thus, we propose that the acquisition of Fe-hydrogenases, together with Hyd maturases, occurred once in eukaryotic evolution, followed by the appearance of Narf through gene duplication of the Fe-hydrogenase gene and subsequent loss of the Hyd proteins in eukaryotes in which Fe-hydrogenase function was lost.
PLOS Pathogens | 2012
Pavel Dolezal; Margareta Aili; Janette Tong; Jhih-Hang Jiang; Carlo M.T. Marobbio; Sau Fung Lee; Ralf Schuelein; Simon Belluzzo; Eva Binova; Aurelie Mousnier; Gad Frankel; Giulia Giannuzzi; Ferdinando Palmieri; Kipros Gabriel; Thomas Naderer; Elizabeth L. Hartland; Trevor Lithgow
The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionella nucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaires disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.
Journal of Pharmacy and Pharmacology | 2009
Michaela Madlova; Cynthia Bosquillon; Dan Asker; Pavel Dolezal; Ben Forbes
OBJECTIVES The P-glycoprotein (P-gp) efflux pump is known to be present within several major physiological barriers including the brain, kidney, intestine and placenta. However, the function of P-gp in the airways of the lung is unclear. The purpose of this study was to use the highly specific P-gp inhibitor GF120918A to investigate the activity of the P-gp transporter in the airways to determine whether P-gp could influence inhaled drug disposition. METHODS P-gp activity was measured as a change in digoxin transport in the presence of GF120918A in normal human bronchial epithelial (NHBE) cells, Calu-3 cell layers and the ex-vivo rat lung. KEY FINDINGS The efflux ratios (ERs) in NHBE and Calu-3 cells were between 0.5 and 2, in contrast to 10.7 in the Caco-2 cell control. These low levels of GF120918A-sensitive polarised digoxin transport were measured in the absorptive direction in NHBE cells (ER = 0.5) and in the secretory direction in Calu-3 cells (ER = 2), but only after 21 days in culture for both cell systems and only in Calu-3 cells at passage > 50. The airspace to perfusate transfer kinetics of digoxin in the ex-vivo rat lung were unchanged in the presence of GF120918A. CONCLUSIONS These results demonstrated that although low levels of highly culture-dependent P-gp activity could be measured in cell-lines, these should not be interpreted to mean that P-gp is a major determinant of drug disposition in the airways of the lung.
Eukaryotic Cell | 2007
Pavel Dolezal; Andrew Dancis; Emmanuel Lesuisse; Robert Sutak; Ivan Hrdý; T. Martin Embley; Jan Tachezy
ABSTRACT Recent data suggest that frataxin plays a key role in eukaryote cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (FeS) cluster biosynthesis. We have now identified a frataxin homologue (T. vaginalis frataxin) from the human parasite Trichomonas vaginalis. Instead of mitochondria, this unicellular eukaryote possesses hydrogenosomes, peculiar organelles that produce hydrogen but nevertheless share common ancestry with mitochondria. T. vaginalis frataxin contains conserved residues implicated in iron binding, and in silico, it is predicted to form a typical α-β sandwich motif. The short N-terminal extension of T. vaginalis frataxin resembles presequences that target proteins to hydrogenosomes, a prediction confirmed by the results of overexpression of T. vaginalis frataxin in T. vaginalis. When expressed in the mitochondria of a frataxin-deficient Saccharomyces cerevisiae strain, T. vaginalis frataxin partially restored defects in heme and FeS cluster biosynthesis. Although components of heme synthesis or heme-containing proteins have not been found in T. vaginalis to date, T. vaginalis frataxin was also shown to interact with S. cerevisiae ferrochelatase by using a Biacore assay. The discovery of conserved iron-metabolizing pathways in mitochondria and hydrogenosomes provides additional evidence not only of their common evolutionary history, but also of the fundamental importance of this pathway for eukaryotes.
Molecular Biology and Evolution | 2012
Felicity Alcock; Chaille T. Webb; Pavel Dolezal; Victoria Hewitt; Miguel Shingu-Vasquez; Vladimir A. Likić; Ana Traven; Trevor Lithgow
The apicomplexan parasite Cryptosporidium parvum possesses a mitosome, a relict mitochondrion with a greatly reduced metabolic capability. This mitosome houses a mitochondrial-type protein import apparatus, but elements of the protein import pathway have been reduced, and even lost, through evolution. The small Tim protein family is a case in point. The genomes of C. parvum and related species of Cryptosporidium each encode just one small Tim protein, CpTimS. This observation challenged the tenet that small Tim proteins are always found in pairs as α3β3 hexamers. We show that the atypical CpTimS exists as a relatively unstable homohexamer, shedding light both on the early evolution of the small Tim protein family and on small Tim hexamer formation in contemporary eukaryotes.