Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pavel Honsa is active.

Publication


Featured researches published by Pavel Honsa.


PLOS ONE | 2012

The Increased Activity of TRPV4 Channel in the Astrocytes of the Adult Rat Hippocampus after Cerebral Hypoxia/Ischemia

Olena Butenko; David Dzamba; Jana Benesova; Pavel Honsa; Valentina Benfenati; Vendula Rusnakova; Stefano Ferroni; Miroslava Anderova

The polymodal transient receptor potential vanilloid 4 (TRPV4) channel, a member of the TRP channel family, is a calcium-permeable cationic channel that is gated by various stimuli such as cell swelling, low pH and high temperature. Therefore, TRPV4-mediated calcium entry may be involved in neuronal and glia pathophysiology associated with various disorders of the central nervous system, such as ischemia. The TRPV4 channel has been recently found in adult rat cortical and hippocampal astrocytes; however, its role in astrocyte pathophysiology is still not defined. In the present study, we examined the impact of cerebral hypoxia/ischemia (H/I) on the functional expression of astrocytic TRPV4 channels in the adult rat hippocampal CA1 region employing immunohistochemical analyses, the patch-clamp technique and microfluorimetric intracellular calcium imaging on astrocytes in slices as well as on those isolated from sham-operated or ischemic hippocampi. Hypoxia/ischemia was induced by a bilateral 15-minute occlusion of the common carotids combined with hypoxic conditions. Our immunohistochemical analyses revealed that 7 days after H/I, the expression of TRPV4 is markedly enhanced in hippocampal astrocytes of the CA1 region and that the increasing TRPV4 expression coincides with the development of astrogliosis. Additionally, adult hippocampal astrocytes in slices or cultured hippocampal astrocytes respond to the TRPV4 activator 4-alpha-phorbol-12,-13-didecanoate (4αPDD) by an increase in intracellular calcium and the activation of a cationic current, both of which are abolished by the removal of extracellular calcium or exposure to TRP antagonists, such as Ruthenium Red or RN1734. Following hypoxic/ischemic injury, the responses of astrocytes to 4αPDD are significantly augmented. Collectively, we show that TRPV4 channels are involved in ischemia-induced calcium entry in reactive astrocytes and thus, might participate in the pathogenic mechanisms of astroglial reactivity following ischemic insult.


PLOS ONE | 2013

Heterogeneity of Astrocytes: From Development to Injury – Single Cell Gene Expression

Vendula Rusnakova; Pavel Honsa; David Dzamba; Anders Ståhlberg; Mikael Kubista; Miroslava Anderova

Astrocytes perform control and regulatory functions in the central nervous system; heterogeneity among them is still a matter of debate due to limited knowledge of their gene expression profiles and functional diversity. To unravel astrocyte heterogeneity during postnatal development and after focal cerebral ischemia, we employed single-cell gene expression profiling in acutely isolated cortical GFAP/EGFP-positive cells. Using a microfluidic qPCR platform, we profiled 47 genes encoding glial markers and ion channels/transporters/receptors participating in maintaining K+ and glutamate homeostasis per cell. Self-organizing maps and principal component analyses revealed three subpopulations within 10–50 days of postnatal development (P10–P50). The first subpopulation, mainly immature glia from P10, was characterized by high transcriptional activity of all studied genes, including polydendrocytic markers. The second subpopulation (mostly from P20) was characterized by low gene transcript levels, while the third subpopulation encompassed mature astrocytes (mainly from P30, P50). Within 14 days after ischemia (D3, D7, D14), additional astrocytic subpopulations were identified: resting glia (mostly from P50 and D3), transcriptionally active early reactive glia (mainly from D7) and permanent reactive glia (solely from D14). Following focal cerebral ischemia, reactive astrocytes underwent pronounced changes in the expression of aquaporins, nonspecific cationic and potassium channels, glutamate receptors and reactive astrocyte markers.


PLOS ONE | 2012

Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice.

Jana Benesova; Vendula Rusnakova; Pavel Honsa; Helena Pivonkova; David Dzamba; Mikael Kubista; Miroslava Anderova

Recently, we have identified two astrocytic subpopulations in the cortex of GFAP-EGFP mice, in which the astrocytes are visualized by the enhanced green–fluorescent protein (EGFP) under the control of the human glial fibrillary acidic protein (GFAP) promotor. These astrocytic subpopulations, termed high response- (HR-) and low response- (LR-) astrocytes, differed in the extent of their swelling during oxygen-glucose deprivation (OGD). In the present study we focused on identifying the ion channels or transporters that might underlie the different capabilities of these two astrocytic subpopulations to regulate their volume during OGD. Using three-dimensional confocal morphometry, which enables quantification of the total astrocytic volume, the effects of selected inhibitors of K+ and Cl− channels/transporters or glutamate transporters on astrocyte volume changes were determined during 20 minute-OGD in situ. The inhibition of volume regulated anion channels (VRACs) and two-pore domain potassium channels (K2P) highlighted their distinct contributions to volume regulation in HR-/LR-astrocytes. While the inhibition of VRACs or K2P channels revealed their contribution to the swelling of HR-astrocytes, in LR-astrocytes they were both involved in anion/K+ effluxes. Additionally, the inhibition of Na+-K+-Cl− co-transporters in HR-astrocytes led to a reduction of cell swelling, but it had no effect on LR-astrocyte volume. Moreover, employing real-time single-cell quantitative polymerase chain reaction (PCR), we characterized the expression profiles of EGFP-positive astrocytes with a focus on those ion channels and transporters participating in astrocyte swelling and volume regulation. The PCR data revealed the existence of two astrocytic subpopulations markedly differing in their gene expression levels for inwardly rectifying K+ channels (Kir4.1), K2P channels (TREK-1 and TWIK-1) and Cl− channels (ClC2). Thus, we propose that the diverse volume changes displayed by cortical astrocytes during OGD mainly result from their distinct expression patterns of ClC2 and K2P channels.


PLOS ONE | 2012

Polydendrocytes display large lineage plasticity following focal cerebral ischemia.

Pavel Honsa; Helena Pivonkova; David Dzamba; Marcela Filipova; Miroslava Anderova

Polydendrocytes (also known as NG2 glial cells) constitute a fourth major glial cell type in the adult mammalian central nervous system (CNS) that is distinct from other cell types. Although much evidence suggests that these cells are multipotent in vitro, their differentiation potential in vivo under physiological or pathophysiological conditions is still controversial. To follow the fate of polydendrocytes after CNS pathology, permanent middle cerebral artery occlusion (MCAo), a commonly used model of focal cerebral ischemia, was carried out on adult NG2creBAC:ZEG double transgenic mice, in which enhanced green fluorescent protein (EGFP) is expressed in polydendrocytes and their progeny. The phenotype of the EGFP+ cells was analyzed using immunohistochemistry and the patch-clamp technique 3, 7 and 14 days after MCAo. In sham-operated mice (control), EGFP+ cells in the cortex expressed protein markers and displayed electrophysiological properties of polydendrocytes and oligodendrocytes. We did not detect any co-labeling of EGFP with neuronal, microglial or astroglial markers in this region, thus proving polydendrocyte unipotent differentiation potential under physiological conditions. Three days after MCAo the number of EGFP+ cells in the gliotic tissue dramatically increased when compared to control animals, and these cells displayed properties of proliferating cells. However, in later phases after MCAo a large subpopulation of EGFP+ cells expressed protein markers and electrophysiological properties of astrocytes that contribute to the formation of glial scar. Importantly, some EGFP+ cells displayed membrane properties typical for neural precursor cells, and moreover these cells expressed doublecortin (DCX) – a marker of newly-derived neuronal cells. Taken together, our data indicate that polydendrocytes in the dorsal cortex display multipotent differentiation potential after focal ischemia.


PLOS ONE | 2014

Altered Astrocytic Swelling in the Cortex of α-Syntrophin-Negative GFAP/EGFP Mice

Miroslava Anderova; Jana Benesova; Michaela Mikesova; David Dzamba; Pavel Honsa; Jan Kriska; Olena Butenko; Vendula Novosadova; Lukas Valihrach; Mikael Kubista; Lesia Dmytrenko; Michal Cicanic; Lydia Vargova

Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K+ and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K+ clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K+. As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K+, α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K+.


Neuroscience | 2010

Distinct effects of sonic hedgehog and Wnt-7a on differentiation of neonatal neural stem/progenitor cells in vitro.

Iva Prajerová; Pavel Honsa; Alexandr Chvátal; Miroslava Anderova

Sonic hedgehog (Shh) and Wnt-7a are morphogens involved in embryonic as well as ongoing adult neurogenesis. Their effects on the differentiation and membrane properties of neonatal neural stem/progenitor cells (NS/PCs) were studied in vitro using NS/PCs transduced with either Shh or Wnt-7a. Eight days after the onset of in vitro differentiation the cells were analyzed for the expression of neuronal and glial markers using immunocytochemical and Western blot analysis, and their membrane properties were characterized using the patch-clamp technique. Our results showed that both Shh and Wnt-7a increased the numbers of cells expressing neuronal markers; however, quantitative immunocytochemical analysis showed that only Wnt-7a enhanced the outgrowth and the development of processes in these cells. In addition, Wnt-7a markedly suppressed gliogenesis. The electrophysiological analysis revealed that Wnt-7a increased, while Shh decreased the incidence of cells displaying a neuron-like current pattern, represented by outwardly rectifying K(+) currents and tetrodotoxin-sensitive Na(+) currents. Additionally, Wnt-7a increased cell proliferation only at the early stages of differentiation, while Shh promoted proliferation within the entire course of differentiation. Thus we can conclude that Shh and Wnt-7a interfere differently with the process of neuronal differentiation and that they promote distinct stages of neuronal differentiation in neonatal NS/PCs.


Cellular and Molecular Neurobiology | 2010

Neural Stem/Progenitor Cells Derived from the Embryonic Dorsal Telencephalon of D6/GFP Mice Differentiate Primarily into Neurons After Transplantation into a Cortical Lesion

Iva Prajerová; Pavel Honsa; Alexandr Chvátal; Miroslava Anderova

D6 is a promoter/enhancer of the mDach1 gene that is involved in the development of the neocortex and hippocampus. It is expressed by proliferating neural stem/progenitor cells (NSPCs) of the cortex at early stages of neurogenesis. The differentiation potential of NSPCs isolated from embryonic day 12 mouse embryos, in which the expression of green fluorescent protein (GFP) is driven by the D6 promoter/enhancer, has been studied in vitro and after transplantation into the intact adult rat brain as well as into the site of a photochemical lesion. The electrophysiological properties of D6/GFP-derived cells were studied using the whole-cell patch-clamp technique, and immunohistochemical analyses were carried out. D6/GFP-derived neurospheres expressed markers of radial glia and gave rise predominantly to immature neurons and GFAP-positive cells during in vitro differentiation. One week after transplantation into the intact brain or into the site of a photochemical lesion, transplanted cells expressed only neuronal markers. D6/GFP-derived neurons were characterised by the expression of tetrodotoxin-sensitive Na+-currents and KA- and KDR currents sensitive to 4-aminopyridine. They were able to fire repetitive action potentials and responded to the application of GABA. Our results indicate that after transplantation into the site of a photochemical lesion, D6/GFP-derived NSPCs survive and differentiate into neurons, and their membrane properties are comparable to those transplanted into the non-injured cortex. Therefore, region-specific D6/GFP-derived NSPCs represent a promising tool for studying neurogenesis and cell replacement in a damaged cellular environment.


Cellular and Molecular Neurobiology | 2015

Quantitative Analysis of Glutamate Receptors in Glial Cells from the Cortex of GFAP/EGFP Mice Following Ischemic Injury: Focus on NMDA Receptors

David Dzamba; Pavel Honsa; Martin Valny; Jan Kriska; Lukas Valihrach; Vendula Novosadova; Mikael Kubista; Miroslava Anderova

Cortical glial cells contain both ionotropic and metabotropic glutamate receptors. Despite several efforts, a comprehensive analysis of the entire family of glutamate receptors and their subunits present in glial cells is still missing. Here, we provide an overall picture of the gene expression of ionotropic (AMPA, kainate, NMDA) and the main metabotropic glutamate receptors in cortical glial cells isolated from GFAP/EGFP mice before and after focal cerebral ischemia. Employing single-cell RT-qPCR, we detected the expression of genes encoding subunits of glutamate receptors in GFAP/EGFP-positive (GFAP/EGFP+) glial cells in the cortex of young adult mice. Most of the analyzed cells expressed mRNA for glutamate receptor subunits, the expression of which, in most cases, even increased after ischemic injury. Data analyses disclosed several classes of GFAP/EGFP+ glial cells with respect to glutamate receptors and revealed in what manner their expression correlates with the expression of glial markers prior to and after ischemia. Furthermore, we also examined the protein expression and functional significance of NMDA receptors in glial cells. Immunohistochemical analyses of all seven NMDA receptor subunits provided direct evidence that the GluN3A subunit is present in GFAP/EGFP+ glial cells and that its expression is increased after ischemia. In situ and in vitro Ca2+ imaging revealed that Ca2+ elevations evoked by the application of NMDA were diminished in GFAP/EGFP+ glial cells following ischemia. Our results provide a comprehensive description of glutamate receptors in cortical GFAP/EGFP+ glial cells and may serve as a basis for further research on glial cell physiology and pathophysiology.


Glia | 2014

Increased Expression of Hyperpolarization- Activated Cyclic Nucleotide-Gated (HCN) Channels in Reactive Astrocytes Following Ischemia

Pavel Honsa; Helena Pivonkova; Lenka Harantova; Olena Butenko; Jan Kriska; David Dzamba; Vendula Rusnakova; Lukas Valihrach; Mikael Kubista; Miroslava Anderova

Astrocytes respond to ischemic brain injury by proliferation, the increased expression of intermediate filaments and hypertrophy, which results in glial scar formation. In addition, they alter the expression of ion channels, receptors and transporters that maintain ionic/neurotransmitter homeostasis. Here, we aimed to demonstrate the expression of Hcn1–4 genes encoding hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels in reactive astrocytes following focal cerebral ischemia (FCI) or global cerebral ischemia (GCI) and to characterize their functional properties. A permanent occlusion of the middle cerebral artery (MCAo) was employed to induce FCI in adult GFAP/EGFP mice, while GCI was induced by transient bilateral common carotid artery occlusion combined with hypoxia in adult rats. Using FACS, we isolated astrocytes from non‐injured or ischemic brains and performed gene expression profiling using single‐cell RT‐qPCR. We showed that 2 weeks after ischemia reactive astrocytes express high levels of Hcn1–4 transcripts, while immunohistochemical analyses confirmed the presence of HCN1–3 channels in reactive astrocytes 5 weeks after ischemia. Electrophysiological recordings revealed that post‐ischemic astrocytes are significantly depolarized, and compared with astrocytes from non‐injured brains, they display large hyperpolarization‐activated inward currents, the density of which increased 2–3‐fold in response to ischemia. Their activation was facilitated by cAMP and their amplitudes were decreased by ZD7288 or low extracellular Na+ concentration, suggesting that they may belong to the family of HCN channels. Collectively, our results demonstrate that regardless of the type of ischemic injury, reactive astrocytes express HCN channels, which could therefore be an important therapeutic target in poststroke therapy. GLIA 2014;62:2004–2021


Glia | 2016

Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog

Pavel Honsa; Martin Valny; Jan Kriska; Hana Matuskova; Lenka Harantova; Denisa Kirdajova; Lukas Valihrach; Peter Androvic; Mikael Kubista; Miroslava Anderova

NG2 cells, a fourth glial cell type in the adult mammalian central nervous system, produce oligodendrocytes in the healthy nervous tissue, and display wide differentiation potential under pathological conditions, where they could give rise to reactive astrocytes. The factors that control the differentiation of NG2 cells after focal cerebral ischemia (FCI) are largely unknown. Here, we used transgenic Cspg4‐cre/Esr1/ROSA26Sortm14(CAG‐tdTomato) mice, in which tamoxifen administration triggers the expression of red fluorescent protein (tomato) specifically in NG2 cells and cells derived therefrom. Differentiation potential (in vitro and in vivo) of tomato‐positive NG2 cells from control or postischemic brains was determined using the immunohistochemistry, single cell RT‐qPCR and patch–clamp method. The ischemic injury was induced by middle cerebral artery occlusion, a model of FCI. Using genetic fate‐mapping method, we identified sonic hedgehog (Shh) as an important factor that influences differentiation of NG2 cells into astrocytes in vitro. We also manipulated Shh signaling in the adult mouse brain after FCI. Shh signaling activation significantly increased the number of astrocytes derived from NG2 cells in the glial scar around the ischemic lesion, while Shh signaling inhibition caused the opposite effect. Since Shh signaling modifications did not change the proliferation rate of NG2 cells, we can conclude that Shh has a direct influence on the differentiation of NG2 cells and therefore, on the formation and composition of a glial scar, which consequently affects the degree of the brain damage. GLIA 2016;64:1518–1531

Collaboration


Dive into the Pavel Honsa's collaboration.

Top Co-Authors

Avatar

Miroslava Anderova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

David Dzamba

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Kriska

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Mikael Kubista

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Lukas Valihrach

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Martin Valny

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Helena Pivonkova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Olena Butenko

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Vendula Rusnakova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Denisa Kirdajova

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge