Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pavel Hozák is active.

Publication


Featured researches published by Pavel Hozák.


Nature Cell Biology | 2004

Nuclear actin and myosin I are required for RNA polymerase I transcription

Vlada V. Philimonenko; Jian Zhao; Sebastian Iben; Hana Dingová; Katarína Kyselá; Michal Kahle; Hanswalter Zentgraf; Wilma A. Hofmann; Primal de Lanerolle; Pavel Hozák; Ingrid Grummt

The presence of actin and nuclear myosin I (NMI) in the nucleus suggests a role for these motor proteins in nuclear functions. We have investigated the role of actin and nuclear myosin I (NMI) in the transcription of ribosomal RNA genes (rDNA). Both proteins are associated with rDNA and are required for RNA polymerase I (Pol I) transcription. Microinjection of antibodies against actin or NMI, as well as short interfering RNA-mediated depletion of NMI, decreased Pol I transcription in vivo, whereas overexpression of NMI augmented pre-rRNA synthesis. In vitro, recombinant NMI activated Pol I transcription, and antibodies to NMI or actin inhibited Pol I transcription both on naked DNA and pre-assembled chromatin templates. Whereas actin associated with Pol I, NMI bound to Pol I through the transcription-initiation factor TIF-IA. The association with Pol I requires phosphorylation of TIF-IA at Ser 649 by RSK kinase, indicating a role for NMI in the growth-dependent regulation of rRNA synthesis.


Nature Cell Biology | 2004

Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II

Wilma A. Hofmann; Ljuba Stojiljkovic; Beata Fuchsova; Gabriela M. Vargas; Evangelos Mavrommatis; Vlada V. Philimonenko; Katarína Kyselá; James A. Goodrich; James L. Lessard; Thomas J. Hope; Pavel Hozák; Primal de Lanerolle

Actin is abundant in the nucleus and has been implicated in transcription; however, the nature of this involvement has not been established. Here we demonstrate that β-actin is critically involved in transcription because antibodies directed against β-actin, but not muscle actin, inhibited transcription in vivo and in vitro. Chromatin immunoprecipitation assays demonstrated the recruitment of actin to the promoter region of the interferon-γ-inducible MHC2TA gene as well as the interferon-α-inducible G1P3 gene. Further investigation revealed that actin and RNA polymerase II co-localize in vivo and also co-purify. We employed an in vitro system with purified nuclear components to demonstrate that antibodies to β-actin block the initiation of transcription. This assay also demonstrates that β-actin stimulates transcription by RNA polymerase II. Finally, DNA-binding experiments established the presence of β-actin in pre-initiation complexes and also showed that the depletion of actin prevented the formation of pre-initiation complexes. Together, these data suggest a fundamental role for actin in the initiation of transcription by RNA polymerase II.


Cell Metabolism | 2015

Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA

An S. Tan; James W. Baty; Lan-Feng Dong; Ayenachew Bezawork-Geleta; Berwini Endaya; Jacob Goodwin; Martina Bajzikova; Jaromira Kovarova; Martin Peterka; Bing Yan; Elham Alizadeh Pesdar; Margarita Sobol; Anatolyj Filimonenko; Shani Stuart; Magdalena Vondrusova; Katarina Kluckova; Karishma Sachaphibulkij; Jakub Rohlena; Pavel Hozák; Jaroslav Truksa; David Eccles; Larisa M. Haupt; Lyn R. Griffiths; Jiri Neuzil; Michael V. Berridge

We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.


Free Radical Biology and Medicine | 2011

Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm for effective cancer therapy

Lan-Feng Dong; Victoria J.A. Jameson; David Patrice Tilly; Lubomir Prochazka; Jakub Rohlena; Karel Valis; Jaroslav Truksa; Renata Zobalova; Elahe Mahdavian; Katarina Kluckova; Marina Stantic; Jan Stursa; Ruth Freeman; Paul K. Witting; Erik Norberg; Jacob Goodwin; Brian A. Salvatore; Jana Novotná; Jaroslav Turánek; Miroslav Ledvina; Pavel Hozák; Boris Zhivotovsky; Mark J. Coster; Stephen John Ralph; Robin A. J. Smith; Jiri Neuzil

Mitochondria are emerging as intriguing targets for anti-cancer agents. We tested here a novel approach, whereby the mitochondrially targeted delivery of anti-cancer drugs is enhanced by the addition of a triphenylphosphonium group (TPP(+)). A mitochondrially targeted analog of vitamin E succinate (MitoVES), modified by tagging the parental compound with TPP(+), induced considerably more robust apoptosis in cancer cells with a 1-2 log gain in anti-cancer activity compared to the unmodified counterpart, while maintaining selectivity for malignant cells. This is because MitoVES associates with mitochondria and causes fast generation of reactive oxygen species that then trigger mitochondria-dependent apoptosis, involving transcriptional modulation of the Bcl-2 family proteins. MitoVES proved superior in suppression of experimental tumors compared to the untargeted analog. We propose that mitochondrially targeted delivery of anti-cancer agents offers a new paradigm for increasing the efficacy of compounds with anti-cancer activity.


Histochemistry and Cell Biology | 2005

Nuclear distribution of actin and myosin I depends on transcriptional activity of the cell.

Katarína Kyselá; Anatoly A. Philimonenko; Vlada V. Philimonenko; Jiří Janáček; Michal Kahle; Pavel Hozák

As previous studies suggested, nuclear myosin I (NMI) and actin have important roles in DNA transcription. In this study, we characterized the dynamics of these two proteins during transcriptional activation in phytohemagglutinin (PHA) stimulated human lymphocytes. The stimulation led to strong up-regulation of NMI both on the mRNA and protein level, while actin was relatively stably expressed. The intranuclear distribution of actin and NMI was evaluated using immunogold labeling. In nucleoli of resting cells, actin was localized predominantly to fibrillar centers (FCs), while NMI was located mainly to the dense fibrillar component (DFC). Upon stimulation, FCs remained the main site of actin localization, however, an accumulation of both actin and NMI in the DFC and in the granular component was observed. In the nucleoplasm of resting lymphocytes, both actin and NMI were localized mostly in condensed chromatin. Following stimulation, the majority of both proteins shifted towards the decondensed chromatin. In transcriptionally active cells, both actin and NMI colocalized with nucleoplasmic transcription sites. These results demonstrate that actin and NMI are compartmentalized in the nuclei where they can dynamically translocate depending on transcriptional activity of the cells.


Histochemistry and Cell Biology | 2010

Actin complexes in the cell nucleus: new stones in an old field

E. Castano; Vlada V. Philimonenko; Michal Kahle; J. Fukalová; Alžběta Kalendová; Sukriye Yildirim; R. Dzijak; H. Dingová-Krásna; Pavel Hozák

Actin is a well-known protein that has shown a myriad of activities in the cytoplasm. However, recent findings of actin involvement in nuclear processes are overwhelming. Actin complexes in the nucleus range from very dynamic chromatin-remodeling complexes to structural elements of the matrix with single partners known as actin-binding proteins (ABPs). This review summarizes the recent findings of actin-containing complexes in the nucleus. Particular attention is given to key processes like chromatin remodeling, transcription, DNA replication, nucleocytoplasmic transport and to actin roles in nuclear architecture. Understanding the mechanisms involving ABPs will definitely lead us to the principles of the regulation of gene expression performed via concerting nuclear and cytoplasmic processes.


Histochemistry and Cell Biology | 2009

Ultrastructural localization of actin and actin-binding proteins in the nucleus

Hana Dingová; Jana Fukalová; Miloslava Maninová; Vlada V. Philimonenko; Pavel Hozák

Nuclear actin plays an important role in such processes as chromatin remodeling, transcriptional regulation, RNA processing, and nuclear export. Recent research has demonstrated that actin in the nucleus probably exists in dynamic equilibrium between monomeric and polymeric forms, and some of the actin-binding proteins, known to regulate actin dynamics in cytoplasm, have been also shown to be present in the nucleus. In this paper, we present ultrastructural data on distribution of actin and various actin-binding proteins (α-actinin, filamin, p190RhoGAP, paxillin, spectrin, and tropomyosin) in nuclei of HeLa cells and resting human lymphocytes. Probing extracts of HeLa cells for the presence of actin-binding proteins also confirmed their presence in nuclei. We report for the first time the presence of tropomyosin and p190RhoGAP in the cell nucleus, and the spatial colocalization of actin with spectrin, paxillin, and α-actinin in the nucleolus.


eLife | 2017

Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells

Lan-Feng Dong; Jaromira Kovarova; Martina Bajzikova; Ayenachew Bezawork-Geleta; David Svec; Berwini Endaya; Karishma Sachaphibulkij; Ana Coelho; Natasa Sebkova; Anna Ruzickova; An S. Tan; Katarina Kluckova; Kristyna Judasova; Katerina Zamecnikova; Zuzana Rychtarcikova; Vinod Gopalan; Ladislav Andera; Margarita Sobol; Bing Yan; Bijay Pattnaik; Naveen K. Bhatraju; Jaroslav Truksa; Pavel Stopka; Pavel Hozák; Alfred King-Yin Lam; Radislav Sedlacek; Paulo J. Oliveira; Mikael Kubista; Anurag Agrawal; Katerina Dvorakova-Hortova

Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ0 cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ0 mouse melanoma cells into syngeneic C57BL/6Nsu9-DsRed2 mice that express red fluorescent protein in their mitochondria. We document that mtDNA is acquired by transfer of whole mitochondria from the host animal, leading to normalisation of mitochondrial respiration. Additionally, knockdown of key mitochondrial complex I (NDUFV1) and complex II (SDHC) subunits by shRNA in B16ρ0 cells abolished or significantly retarded their ability to form tumours. Collectively, these results show that intact mitochondria with their mtDNA payload are transferred in the developing tumour, and provide functional evidence for an essential role of oxidative phosphorylation in cancer. DOI: http://dx.doi.org/10.7554/eLife.22187.001


Antioxidants & Redox Signaling | 2011

Mitochondrially Targeted α-Tocopheryl Succinate Is Antiangiogenic: Potential Benefit Against Tumor Angiogenesis but Caution Against Wound Healing

Jakub Rohlena; Lan-Feng Dong; Katarina Kluckova; Renata Zobalova; Jacob Goodwin; David Patrice Tilly; Jan Stursa; Alena Pecinova; Anatoly Philimonenko; Pavel Hozák; Jaideep Banerjee; Miroslav Ledvina; Chandan K. Sen; Josef Houstek; Mark J. Coster; Jiri Neuzil

AIMS A plausible strategy to reduce tumor progress is the inhibition of angiogenesis. Therefore, agents that efficiently suppress angiogenesis can be used for tumor suppression. We tested the antiangiogenic potential of a mitochondrially targeted analog of α-tocopheryl succinate (MitoVES), a compound with high propensity to induce apoptosis. RESULTS MitoVES was found to efficiently kill proliferating endothelial cells (ECs) but not contact-arrested ECs or ECs deficient in mitochondrial DNA, and suppressed angiogenesis in vitro by inducing accumulation of reactive oxygen species and induction of apoptosis in proliferating/angiogenic ECs. Resistance of arrested ECs was ascribed, at least in part, to the lower mitochondrial inner transmembrane potential compared with the proliferating ECs, thus resulting in the lower level of mitochondrial uptake of MitoVES. Shorter-chain homologs of MitoVES were less efficient in angiogenesis inhibition, thus suggesting a molecular mechanism of its activity. Finally, MitoVES was found to suppress HER2-positive breast carcinomas in a transgenic mouse as well as inhibit tumor angiogenesis. The antiangiogenic efficacy of MitoVES was corroborated by its inhibitory activity on wound healing in vivo. INNOVATION AND CONCLUSION We conclude that MitoVES, a mitochondrially targeted analog of α-tocopheryl succinate, is an efficient antiangiogenic agent of potential clinical relevance, exerting considerably higher activity than its untargeted counterpart. MitoVES may be helpful against cancer but may compromise wound healing.


PLOS ONE | 2012

Specific Nuclear Localizing Sequence Directs Two Myosin Isoforms to the Cell Nucleus in Calmodulin-Sensitive Manner

Rastislav Dzijak; Sukriye Yildirim; Michal Kahle; Petr Novák; Jarmila Hnilicová; Tomáš Venit; Pavel Hozák

Background Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the “cytoplasmic” myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. Methodology/Principal Findings We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. Conclusions/Significance We have shown that the novel specific NLS brings to the cell nucleus not only the “nuclear” isoform of myosin I (NM1 protein) but also its “cytoplasmic” isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.

Collaboration


Dive into the Pavel Hozák's collaboration.

Top Co-Authors

Avatar

Vlada V. Philimonenko

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Margarita Sobol

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Anatoly A. Philimonenko

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakub Rohlena

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Lívia Uličná

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Michal Kahle

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Pavel Dráber

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge