Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pavel Hrubes is active.

Publication


Featured researches published by Pavel Hrubes.


Theory of Computing | 2011

Arithmetic Complexity in Ring Extensions

Pavel Hrubes; Amir Yehudayoff

Given a polynomial f with coefficients from a field F, is it easier to compute f over an extension ring R than over F? We address this question, and show the following. For every polynomial f , there is a noncommutative extension ring R such that F is in the center of R and f has a polynomial-size formula over R. On the other hand, if F is algebraically closed, no commutative extension ring R can reduce formula or circuit complexity of f . To complete the picture, we prove that over any field, there exist hard polynomials with zero-one coefficients. (This is a basic theorem, but we could not find it written explicitly.) Finally, we show that low-dimensional extensions are not very helpful in computing polynomials. As a corollary, we obtain that the elementary symmetric polynomials have formulas of size n O(log log n) over any field, and that division gates can be efficiently eliminated from circuits,


Annals of Pure and Applied Logic | 2009

On lengths of proofs in non-classical logics

Pavel Hrubes

Abstract We give proofs of the effective monotone interpolation property for the system of modal logic K , and others, and the system I L of intuitionistic propositional logic. Hence we obtain exponential lower bounds on the number of proof-lines in those systems. The main results have been given in [P. Hrubes, Lower bounds for modal logics, Journal of Symbolic Logic 72 (3) (2007) 941–958; P. Hrubes, A lower bound for intuitionistic logic, Annals of Pure and Applied Logic 146 (2007) 72–90]; here, we give considerably simplified proofs, as well as some generalisations.


Annals of Pure and Applied Logic | 2007

A lower bound for intuitionistic logic

Pavel Hrubes

Abstract We give an exponential lower bound on the number of proof-lines in intuitionistic propositional logic, I L , axiomatised in the usual Frege-style fashion; i.e., we give an example of I L -tautologies A 1 , A 2 , … s.t. every I L -proof of A i must have a number of proof-lines exponential in terms of the size of A i . We show that the results do not apply to the system of classical logic and we obtain an exponential speed-up between classical and intuitionistic logic.


SIAM Journal on Computing | 2015

Short Proofs for the Determinant Identities

Pavel Hrubes; Iddo Tzameret

We study arithmetic proof systems


foundations of computer science | 2017

Random Formulas, Monotone Circuits, and Interpolation

Pavel Hrubes

{\mathbb P}_c({\mathbb F})


symposium on the theory of computing | 2012

Short proofs for the determinant identities

Pavel Hrubes; Iddo Tzameret

and


conference on computational complexity | 2015

Circuits with medium fan-in

Pavel Hrubes; Anup Rao

{\mathbb P}_f({\mathbb F})


Theory of Computing | 2013

On the Real τ-Conjecture and the Distribution of Complex Roots.

Pavel Hrubes

operating with arithmetic circuits and arithmetic formulas, respectively, and that prove polynomial identities over a field


international colloquium on automata, languages and programming | 2016

On Isoperimetric Profiles and Computational Complexity.

Pavel Hrubes; Amir Yehudayoff

{\mathbb F}


Information Processing Letters | 2012

On the nonnegative rank of distance matrices

Pavel Hrubes

. We establish a series of structural theorems about these proof systems, the main one stating that

Collaboration


Dive into the Pavel Hrubes's collaboration.

Top Co-Authors

Avatar

Amir Yehudayoff

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Avi Wigderson

Institute for Advanced Study

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anup Rao

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stasys Jukna

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge