Pavel Musienko
Saint Petersburg State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pavel Musienko.
Nature Neuroscience | 2009
Grégoire Courtine; Yury Gerasimenko; Rubia van den Brand; Aileen Yew; Pavel Musienko; Hui Zhong; Bingbing Song; Yan Ao; Ronaldo M. Ichiyama; Igor Lavrov; Roland R. Roy; Michael V. Sofroniew; V. Reggie Edgerton
After complete spinal cord transections that removed all supraspinal inputs in adult rats, combinations of serotonergic agonists and epidural electrical stimulation were able to acutely transform spinal networks from nonfunctional to highly functional and adaptive states as early as 1 week after injury. Using kinematics, physiological and anatomical analyses, we found that these interventions could recruit specific populations of spinal circuits, refine their control via sensory input and functionally remodel these locomotor pathways when combined with training. The emergence of these new functional states enabled full weight-bearing treadmill locomotion in paralyzed rats that was almost indistinguishable from voluntary stepping. We propose that, in the absence of supraspinal input, spinal locomotion can emerge from a combination of central pattern-generating capability and the ability of these spinal circuits to use sensory afferent input to control stepping. These findings provide a strategy by which individuals with spinal cord injuries could regain substantial levels of motor control.
Science | 2012
Rubia van den Brand; Janine Heutschi; Quentin Barraud; Jack DiGiovanna; Kay Bartholdi; Michèle Huerlimann; Lucia Friedli; Isabel Vollenweider; Eduardo Martin Moraud; Simone Duis; Nadia Dominici; Silvestro Micera; Pavel Musienko; Grégoire Courtine
Regaining Limb Movement Despite many years of intensive research, there is still an urgent need for novel treatments to help patients restore motor function after spinal cord injuries. van den Brand et al. (p. 1182) produced left and right hemisections at different levels of the rat thoracic spinal cord to cause complete hind limb paralysis mimicking the situation in humans with spinal cord injury. Systemic application of pharmacological agents, combined with a multisystem rehabilitation program including a robotic postural neuroprosthesis, restored voluntary movements of both hind limbs. A rehabilitation program involving robotic neuroprosthetics restores previously paralyzed hindlimb function. Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the cortex regained the capacity to transform contextual information into task-specific commands to execute refined locomotion. This recovery relied on the extensive remodeling of cortical projections, including the formation of brainstem and intraspinal relays that restored qualitative control over electrochemically enabled lumbosacral circuitries. Automated treadmill-restricted training, which did not engage cortical neurons, failed to promote translesional plasticity and recovery. By encouraging active participation under functional states, our training paradigm triggered a cortex-dependent recovery that may improve function after similar injuries in humans.
The Journal of Neuroscience | 2011
Pavel Musienko; Rubia van den Brand; Olivia Märzendorfer; Roland R. Roy; Yury Gerasimenko; V. Reggie Edgerton; Grégoire Courtine
Descending monoaminergic inputs markedly influence spinal locomotor circuits, but the functional relationships between specific receptors and the control of walking behavior remain poorly understood. To identify these interactions, we manipulated serotonergic, dopaminergic, and noradrenergic neural pathways pharmacologically during locomotion enabled by electrical spinal cord stimulation in adult spinal rats in vivo. Using advanced neurobiomechanical recordings and multidimensional statistical procedures, we reveal that each monoaminergic receptor modulates a broad but distinct spectrum of kinematic, kinetic, and EMG characteristics, which we expressed into receptor-specific functional maps. We then exploited this catalog of monoaminergic tuning functions to devise optimal pharmacological combinations to encourage locomotion in paralyzed rats. We found that, in most cases, receptor-specific modulatory influences summed near algebraically when stimulating multiple pathways concurrently. Capitalizing on these predictive interactions, we elaborated a multidimensional monoaminergic intervention that restored coordinated hindlimb locomotion with normal levels of weight bearing and partial equilibrium maintenance in spinal rats. These findings provide new perspectives on the functions of and interactions between spinal monoaminergic receptor systems in producing stepping, and define a framework to tailor pharmacotherapies for improving neurological functions after CNS disorders.
Nature Medicine | 2012
Nadia Dominici; Urs Keller; Heike Vallery; Lucia Friedli; Rubia van den Brand; Michelle L Starkey; Pavel Musienko; Robert Riener; Grégoire Courtine
Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and balance independently during natural walking behaviors in rats. In evaluation mode, the robotic interface affords detailed assessments of pattern generation and dynamic equilibrium after spinal cord injury (SCI) and stroke. In enabling mode, the robot acts as a propulsive or postural neuroprosthesis that instantly promotes unexpected locomotor capacities including overground walking after complete SCI, stair climbing following partial SCI and precise paw placement shortly after stroke. In training mode, robot-enabled rehabilitation, epidural electrical stimulation and monoamine agonists reestablish weight-supported locomotion, coordinated steering and balance in rats with a paralyzing SCI. This new robotic technology and associated concepts have broad implications for both assessing and restoring motor functions after CNS disorders, both in animals and in humans.
The Journal of Neuroscience | 2013
Marco Capogrosso; Nikolaus Wenger; Stanisa Raspopovic; Pavel Musienko; Janine Beauparlant; Lorenzo Bassi Luciani; Grégoire Courtine; Silvestro Micera
Epidural electrical stimulation (EES) of lumbosacral segments can restore a range of movements after spinal cord injury. However, the mechanisms and neural structures through which EES facilitates movement execution remain unclear. Here, we designed a computational model and performed in vivo experiments to investigate the type of fibers, neurons, and circuits recruited in response to EES. We first developed a realistic finite element computer model of rat lumbosacral segments to identify the currents generated by EES. To evaluate the impact of these currents on sensorimotor circuits, we coupled this model with an anatomically realistic axon-cable model of motoneurons, interneurons, and myelinated afferent fibers for antagonistic ankle muscles. Comparisons between computer simulations and experiments revealed the ability of the model to predict EES-evoked motor responses over multiple intensities and locations. Analysis of the recruited neural structures revealed the lack of direct influence of EES on motoneurons and interneurons. Simulations and pharmacological experiments demonstrated that EES engages spinal circuits trans-synaptically through the recruitment of myelinated afferent fibers. The model also predicted the capacity of spatially distinct EES to modulate side-specific limb movements and, to a lesser extent, extension versus flexion. These predictions were confirmed during standing and walking enabled by EES in spinal rats. These combined results provide a mechanistic framework for the design of spinal neuroprosthetic systems to improve standing and walking after neurological disorders.
Science Translational Medicine | 2014
Nikolaus Wenger; Eduardo Martin Moraud; Stanisa Raspopovic; Marco Bonizzato; Jack DiGiovanna; Pavel Musienko; Silvestro Micera; Grégoire Courtine
Closed-loop neuromodulation of spinal sensorimotor circuits allows high-fidelity control over leg movements in paralyzed rats. Closing the Loop on Neuroprosthetic Control Patients with spinal cord injury (SCI) and paralysis may soon be outfitted with so-called neuromodulation devices, which electrically stimulate the brain or spinal cord, causing movement in the legs. Currently, tuning such modulation requires constant observation and patient-specific adjustments, which are not ideal for fluid movement or for broad translation of these technologies to injured patients. In response, Wenger et al. have created a closed-loop system that will essentially “auto-tune” the device, allowing the paralyzed patient—or, in their study, the paralyzed rat—to move freely, without worrying about adjusting electrical pulse width, amplitude, or frequency. The authors gave rats complete SCI epidural electrical stimulation and then mapped their leg movements and sensorimotor responses while in a body support system, walking upright (bipedal) on a treadmill, or climbing stairs. From this information, they devised a computational system that integrated feedback and feed-forward models for closed-loop, continuous control of leg movement and, in turn, a more natural locomotion. Closed-loop neuromodulation of spinal circuits could impart fluid motor control and prevent fatigue when rehabilitating patients with SCI. Neuromodulation of spinal sensorimotor circuits improves motor control in animal models and humans with spinal cord injury. With common neuromodulation devices, electrical stimulation parameters are tuned manually and remain constant during movement. We developed a mechanistic framework to optimize neuromodulation in real time to achieve high-fidelity control of leg kinematics during locomotion in rats. We first uncovered relationships between neuromodulation parameters and recruitment of distinct sensorimotor circuits, resulting in predictive adjustments of leg kinematics. Second, we established a technological platform with embedded control policies that integrated robust movement feedback and feed-forward control loops in real time. These developments allowed us to conceive a neuroprosthetic system that controlled a broad range of foot trajectories during continuous locomotion in paralyzed rats. Animals with complete spinal cord injury performed more than 1000 successive steps without failure, and were able to climb staircases of various heights and lengths with precision and fluidity. Beyond therapeutic potential, these findings provide a conceptual and technical framework to personalize neuromodulation treatments for other neurological disorders.
Behavioural Brain Research | 2008
Pavel Musienko; Pavel V. Zelenin; Vladimir F. Lyalka; G. N. Orlovsky; T. G. Deliagina
It is known that animals decerebrated at the premammillary level are capable of standing and walking without losing balance, in contrast to postmammillary ones which do not exhibit such behavior. The main goals of the present study were, first, to characterize the postural performance in premammillary rabbits, and, second, to activate the postural system in postmammillary ones by brainstem stimulation. For evaluation of postural capacity of decerebrated rabbits, motor and EMG responses to lateral tilts of the supporting platform and to lateral pushes were recorded before and after decerebration. In addition, the righting behavior (i.e., standing up from the lying position) was video recorded. We found that, in premammillary rabbits, responses to lateral tilts and pushes were similar to those observed in intact ones, but the magnitude of responses was reduced. During righting, premammillary rabbits assumed the normal position slower than intact ones. To activate the postural system in postmammillary rabbits, we stimulated electrically two brainstem structures, the mesencephalic locomotor region (MLR) and the ventral tegmental field (VTF). The MLR stimulation (prior to elicitation of locomotion) and the VTF stimulation caused an increase of the tone of hindlimb extensors, and enhanced their responses to lateral tilts and to pushes. These results indicate that the basic mechanisms for maintenance of body posture and equilibrium during standing are present in decerebrated animals. They are active in the premammillary rabbits but need to be activated in the postmammillary ones.
Nature Medicine | 2016
Nikolaus Wenger; Eduardo Martin Moraud; Jerome Gandar; Pavel Musienko; Marco Capogrosso; Laetitia Baud; Camille G. Le Goff; Quentin Barraud; Natalia Pavlova; Nadia Dominici; Ivan R. Minev; Léonie Asboth; Arthur Hirsch; Simone Duis; Julie Kreider; Andrea Mortera; Oliver Haverbeck; Silvio Kraus; Felix Schmitz; Jack DiGiovanna; Rubia van den Brand; Jocelyne Bloch; Peter Detemple; Stéphanie P. Lacour; Erwan Bezard; Silvestro Micera; Grégoire Courtine
Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.
Experimental Neurology | 2012
Pavel Musienko; Janine Heutschi; Lucia Friedli; Rubia van den Brand; Grégoire Courtine
Severe spinal cord injury (SCI) permanently abolishes motor functions caudal to the lesion. However, the neuronal machinery sufficient to produce standing and stepping is located below most SCI, and can be reactivated with training. Therefore, why do rats and humans fail to regain significant levels of motor control after a severe SCI? In this review, we argue that the lack of sustainable excitability in locomotor circuitries after SCI prevents the emergence of functional motor states during training, thus limiting the occurrence of activity-dependent plasticity in paralyzed subjects. In turn, we show that spinal rats trained with combinations of epidural electrical stimulation and monoamine agonists, which promote locomotor permissive states during rehabilitation, can regain coordinated stepping with full weight bearing capacities in the total absence of supraspinal influences. This impressive recovery of function relies on the ability of spinal circuitries to utilize multisensory information as a source of control and learning after the loss of brain input. We finally discuss the implication of these findings for the design of multi-system neurorehabilitative interventions capable of restoring some degree of function in humans with severe SCI.
Brain | 2013
Janine Beauparlant; Rubia van den Brand; Quentin Barraud; Lucia Friedli; Pavel Musienko; Volker Dietz; Grégoire Courtine
Severe spinal cord injury in humans leads to a progressive neuronal dysfunction in the chronic stage of the injury. This dysfunction is characterized by premature exhaustion of muscle activity during assisted locomotion, which is associated with the emergence of abnormal reflex responses. Here, we hypothesize that undirected compensatory plasticity within neural systems caudal to a severe spinal cord injury contributes to the development of neuronal dysfunction in the chronic stage of the injury. We evaluated alterations in functional, electrophysiological and neuromorphological properties of lumbosacral circuitries in adult rats with a staggered thoracic hemisection injury. In the chronic stage of the injury, rats exhibited significant neuronal dysfunction, which was characterized by co-activation of antagonistic muscles, exhaustion of locomotor muscle activity, and deterioration of electrochemically-enabled gait patterns. As observed in humans, neuronal dysfunction was associated with the emergence of abnormal, long-latency reflex responses in leg muscles. Analyses of circuit, fibre and synapse density in segments caudal to the spinal cord injury revealed an extensive, lamina-specific remodelling of neuronal networks in response to the interruption of supraspinal input. These plastic changes restored a near-normal level of synaptic input within denervated spinal segments in the chronic stage of injury. Syndromic analysis uncovered significant correlations between the development of neuronal dysfunction, emergence of abnormal reflexes, and anatomical remodelling of lumbosacral circuitries. Together, these results suggest that spinal neurons deprived of supraspinal input strive to re-establish their synaptic environment. However, this undirected compensatory plasticity forms aberrant neuronal circuits, which may engage inappropriate combinations of sensorimotor networks during gait execution.