Pavel Pokorný
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pavel Pokorný.
Journal of Multiscale Modelling | 2016
Luboš Náhlík; Pavel Pokorný; Martin Ševčík; Pavel Hutař
Railway axles are subjected to cyclic loading which can lead to fatigue failure. For safe operation of railway axles a damage tolerance approach taking into account a possible defect on railway axle surface is often required. The contribution deals with an estimation of residual fatigue lifetime of railway axle with initial inclined surface crack. 3D numerical model of inclined semi-elliptical surface crack in railway axle was developed and its curved propagation through the axle was simulated by finite element method. Presence of press-fitted wheel in the vicinity of initial crack was taken into account. A typical loading spectrum of railway axle was considered and residual fatigue lifetime was estimated by NASGRO approach. Material properties of typical axle steel EA4T were considered in numerical calculations and lifetime estimation.
Key Engineering Materials | 2014
Pavel Pokorný; Luboš Náhlík; Pavel Hutař
The paper deals with an estimation of the residual fatigue lifetime of the railway axles. The railway axles can include some cracks either from manufacturing process or from previous loading operation. Because of cyclic loading of the railway axles there is a risk of fatigue failure of the railway axles with unacceptable consequences. Based on this fact, for conservative establishment of the residual fatigue lifetime of the railway axle is necessary to consider an existing crack in the railway axle during design process. The fatigue lifetime estimation of railway axles is very sensitive to used crack propagation rate description (e.g. v-K curve). Typical bending of this curve (knee) can be found in the vicinity of the threshold value in fatigue crack propagation rate dependence (typically v-K curve expressed in log-log coordinates). For accurate estimation of residual fatigue lifetime of the railway axle is necessary to use approximation of v-K curve that takes into account existence of the knee close to the threshold value of the stress intensity factor. The paper shows important differences between different crack propagation rate descriptions on the residual fatigue lifetime estimation of the railway axles. Results obtained can be used for safer design and operation of the railway axles.
Advanced Materials Research | 2014
Luboš Náhlík; Pavel Pokorný; Pavel Hutař
The railway axles are subjected to cyclic loading, therefore there is a risk of fatigue failure. For reason that possible crack could not be detected by non-destructive testing method an existing crack in the railway axle must be considered. This is conservative approach commonly used in applications where potential fatigue failure has unaccepted consequences. This paper deals with retardation effect caused by overload cycles and compares results obtained by no retardation approach and results obtained by generalized Willenborg model, which takes into account the retardation effects due to plastic zone around the crack tip. Results obtained can contribute to the better understanding of fatigue crack behavior in railway axles.
Key Engineering Materials | 2013
Pavel Pokorný; Luboš Náhlík; M. Ševčík; Pavel Hutař
The paper deals with the effects of variable loading on residual fatigue life of the railway wheelset. The railway wheelsets can include some cracks created during manufacturing process or during previous operation. Therefore, it is important to know how the existing cracks will behave during further service of the train. The experiments show that the fatigue crack growth rate depends not only on size of the load amplitudes in a loading spectrum, but it depends also on the sequence of load amplitudes. Taking into account interaction effects of overloading cycles requires use a method that calculates increments of crack length in each cycle, i.e. cycle-by-cycle. One of such methods represents generalized Willenborg model. This model was used for residual fatigue life time estimations of railway wheelset and results obtained were compared with classical approach, which did not take into account interaction effects. Results obtained can be used for establishing of service intervals of railway wheelsets.
Solid State Phenomena | 2017
Radomila Konečná; Ludvík Kunz; Pavel Pokorný; Gianni Nicoletto
Growth of long fatigue cracks in Ti6Al4V alloy manufactured by direct metal laser sintering (DMLS) was investigated. Two DMLS systems, EOSINT M270 and EOSINT M290, with different process parameters were used for production of CT specimens having three different orientations of crack propagation with respect to the DMLS build direction. The as-built specimens were stress relieved at 740 °C. The fatigue crack growth curve and the threshold values of the stress intensity factor for crack propagation were experimentally determined. It has been found that the chosen DMLS processing parameters and the used stress relieving procedure results in material exhibiting isotropic crack growth behavior, i.e. the crack growth was found to be independent of the DMLS build direction. The fatigue crack growth rates and the threshold values for the crack growth were compared with published results characterizing the as-built material and material after different post processing heat treatments.
Journal of Mechanical Engineering | 2017
Tomáš Oplt; Pavel Pokorný; Luboš Náhlík; Pavel Hutař
Abstract Description of stress singularity in the vicinity of a free surface is presented. Its presence causes the retardation of the fatigue crack growth in that region and fatigue crack is being curved. Numerical model is used to study dependence of the stress singularity exponent on Poisson’s ratio. Estimated values are compared to those already published. Experimentally measured angles of fatigue crack on SENB specimens confirm the relation between Poisson’s ratio and the angle between crack front and free surface.
Solid State Phenomena | 2016
Pavel Pokorný; Pavel Hutař; Luboš Náhlík
Railway axles are subjected to cyclic amplitude loading which can lead to fatigue failure. For safe operation of railway axles a damage tolerance approach taking into account a possible defect in railway axle is often required. Because of different operation regimes of trains (fast/slow ride, ride on straight track, on curved track, over switches etc.) the load amplitude of axle is not constant. The variability of load is defined by a load spectrum, which is determined experimentally by measuring of load in service conditions. Even though the load spectrum is measured on several hundreds or thousands of operation kilometres, the railway axles are in operation much longer time (often tens of years). Therefore, some load amplitudes higher than ones measured in the test can occur during a long-term axle service. The contribution presented deals with the effect of extension of load spectrum by rare high load amplitudes, which can occur during long-term operation, on residual fatigue lifetime of railway axles.
Key Engineering Materials | 2016
Kateřina Štegnerová; Luboš Náhlík; Pavel Hutař; Pavel Pokorný; Zdeněk Majer
The contribution deals with the issue of mechanical response of the particulate ceramic composites used in microelectronic. Mechanical properties and behaviour of composites are highly influenced by residual stresses which are developed in material during cooling in manufacturing process due to the different coefficients of thermal expansions of individual constituents. The main aim of this paper is to estimate the elastic constants and strength of the selected particulate ceramic composites with considering the residual stresses. Three dimensional models and finite element method are used for numerical simulations. Results contribute to determination and better understanding of mechanical behaviour of the particulate ceramic composites.
Key Engineering Materials | 2013
Luboš Náhlík; Pavel Pokorný; Pavel Hutař; Petr Matušek
The paper deals with the influence of order of cycles in the loading block on the fatigue crack growth rate in railway axle. The railway axle can include some cracks from manufacturing process or initiated fatigue cracks from previous operation. It is advantageous to know how the crack will behave during further service of the train to ensure its safe operation. The most common approaches describing the fatigue crack growth do not take into account the effects of overload cycles, which enlarge the plastic zone ahead of the crack tip. The enlarged plastic zone generates residual compressive stresses, which cause a retardation of the fatigue crack growth. Finite element numerical calculations were used together with the generalized Willenborg model to determine influence of overload cycles on the increment of fatigue crack growing in railway axles. Real geometry of the axle, the crack front shape and typical loading spectrum were taken into account.
Theoretical and Applied Fracture Mechanics | 2016
Pavel Pokorný; Pavel Hutař; Luboš Náhlík