Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pavel Řehulka is active.

Publication


Featured researches published by Pavel Řehulka.


Journal of Proteomics | 2013

Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing.

Vojtěch Franc; Pavel Řehulka; Martin Raus; Jiří Stulík; Jan Novak; Matthew B. Renfrow; Marek Šebela

UNLABELLED Determining disease-associated changes in protein glycosylation provides a better understanding of pathogenesis. This work focuses on human immunoglobulin A1 (IgA1), where aberrant O-glycosylation plays a key role in the pathogenesis of IgA nephropathy (IgAN). Normal IgA1 hinge region carries 3 to 6 O-glycans consisting of N-acetylgalactosamine (GalNAc) and galactose (Gal); both sugars may be sialylated. In IgAN patients, some O-glycans on a fraction of IgA1 molecules are Gal-deficient. Here we describe a sample preparation protocol with optimized cysteine alkylation of a Gal-deficient polymeric IgA1 myeloma protein prior to in-gel digestion and analysis of the digest by MALDI-TOF/TOF mass spectrometry (MS). Following a novel strategy, IgA1 hinge-region O-glycopeptides were fractionated by reversed-phase liquid chromatography using a microgradient device and identified by MALDI-TOF/TOF tandem MS (MS/MS). The acquired MS/MS spectra were interpreted manually and by means of our own software. This allowed assigning up to six O-glycosylation sites and demonstration, for the first time, of the distribution of isomeric O-glycoforms having the same molecular mass, but a different glycosylation pattern. The most abundant Gal-deficient O-glycoforms were GalNAc4Gal3 and GalNAc5Gal4 with one Gal-deficient site and GalNAc5Gal3 and GalNAc4Gal2 with two Gal-deficient sites. The most frequent Gal-deficient sites were at Ser230 and/or Thr236. BIOLOGICAL SIGNIFICANCE In this work, we studied the O-glycosylation in the hinge region of human immunoglobulin A1 (IgA1). Aberrant glycosylation of the protein plays a key role in the pathogenesis of IgA nephropathy. Thus identification of the O-glycan composition of IgA1 is important for a deeper understanding of the disease mechanism, biomarker discovery and validation, and implementation and monitoring of disease-specific therapies. We developed a new procedure for elucidating the heterogeneity of IgA1 O-glycosylation. After running a polyacrylamide gel electrophoresis under denaturing conditions, the heavy chain of IgA1 was subjected to in-gel digestion by trypsin. O-glycopeptides were separated from the digest on capillary columns using a microgradient chromatographic device (replacing commonly used liquid chromatographs) and subjected to MALDI-TOF/TOF mass spectrometry (MS) and tandem mass spectrometry (MS/MS) involving post-source decay fragmentation. We show that the complete modification of cysteines by iodoacetamide prior to electrophoresis is critical for successful MS/MS analyses on the way to deciphering the microheterogeneity of O-glycosylation in IgA1. Similarly, the removal of the excess of the reagent is equally important. The acquired MS/MS allowed assigning up to six O-glycosylation sites and identification of isomeric O-glycoforms. We show that our simplified approach is efficient and has a high potential to provide a method for the rapid assessment of IgA1 heterogeneity that is a less expensive and yet corroborating alternative to LC-(high-resolution)-MS protocols. The novelty and biological significance reside in the demonstration, for the first time, of the distribution of the most abundant isoforms of HR O-glycopeptides of IgA1. As another new feature, we introduce a software solution for the interpretation of MS/MS data of O-glycopeptide isoforms, which provides the possibility of fast and easier data processing. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.


Analytical Biochemistry | 2008

Evaluation of the possible proteomic application of trypsin from Streptomyces griseus

Tat’ána Štosová; Marek Šebela; Pavel Řehulka; Ondrej Šedo; Jan Havliš; Zbyněk Zdráhal

Trypsin (EC 3.4.21.4) is the protease of choice for proteome analysis using mass spectrometry of peptides in sample digests. In this work, trypsin from Streptomyces griseus (SGT) was purified to homogeneity from pronase. The enzyme was evaluated in in-gel digestion of protein standards followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) analyses of the digests. We recognized a remarkable cleavage performance of SGT. The number of produced and matching tryptic peptides was higher than in the case of commonly used bovine trypsin (BT) and allowed us to obtain higher identification scores in database searches. Interestingly, SGT was found to also generate nonspecific peptides whose sequencing by MALDI-TOF/TOF tandem mass spectrometry (MS/MS) revealed a partial F-X, Y-X, and W-X cleavage specificity. To suppress autolysis, either arginine or arginine plus lysine residues in SGT were modified by chemical reagents. In consequence, the autolytic pattern of SGT was reduced significantly, but specific activity dropped dramatically. As demonstrated by relative quantification of peptides at different times, SGT is more stable at 37 degrees C than is its bovine counterpart. We conclude that SGT represents a convenient alternative for proteomic applications involving protein digestion. Moreover, parallel digestions of sample aliquots by SGT and BT provide the possibility of combining partially different results (unique matching peptides) to improve protein identification.


Journal of Chromatography A | 2009

Short monolithic columns for purification and fractionation of peptide samples for matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis in proteomics.

Dana Moravcová; Vladislav Kahle; Helena Řehulková; Jan Chmelík; Pavel Řehulka

This study records a novel application of methacrylate-based monolithic columns for MALDI-TOF/TOF MS analyses in proteomics for pre-concentration and separation of peptides derived from protein digestion. Reversed-phase monolithic capillary columns (30mm x 0.32mm i.d.) were created inside the fused silica capillary via thermal-initiated free-radical polymerization of ethylene glycol dimethacrylate and lauryl methacrylate monomers in the presence of 1-propanol and 1,4-butandiol as a porogen system. The elution of peptides was achieved using a linear gradient of acetonitrile from 0 to 60% in water with 0.1% trifluoroacetic acid formed in a microsyringe. Individual fractions of separated peptides were collected on the MALDI target spots covered with alpha-cyano-4-hydroxycinnamic acid used as a matrix and then they were analyzed using MALDI-TOF/TOF mass spectrometry. The developed method was tested with a mixture of tryptic peptides from bovine serum albumin and its applicability was also tested for tryptic in-gel digests from barley grain extracts of water soluble proteins separated using SDS gel electrophoresis. The number of detected peptides was approximately three to four times higher compared to the analysis without previous separation. These results show an improved quality of sample information with the higher amount of identified peptides which increased protein sequence coverage and improved sensitivity of mass spectrometry measurements.


Plant Physiology and Biochemistry | 2010

Xyloglucan endotransglycosylases (XETs) from germinating nasturtium (Tropaeolum majus) seeds: isolation and characterization of the major form.

Eva Stratilová; Fairouz Ait-Mohand; Pavel Řehulka; Soňa Garajová; Dana Flodrová; Helena Řehulková; Vladimír Farkaš

Five forms of xyloglucan endotransglycosylase/hydrolase (XTH) differing in their isoelectric points (pI) were detected in crude extracts from germinating nasturtium seeds. Without further fractionation, all five forms behaved as typical endotransglycosylases since they exhibited only transglycosylating (XET) activity and no xyloglucan-hydrolysing (XEH) activity. They all were glycoproteins with identical molecular mass, and deglycosylation led to a decrease in molecular mass from approximately 29 to 26.5 kDa. The major enzyme form having pI 6.3, temporarily designated as TmXET(6.3), was isolated and characterized. Molecular and biochemical properties of TmXET(6.3) confirmed its distinction from the XTHs described previously from nasturtium. The enzyme exhibited broad substrate specificity by transferring xyloglucan or hydroxyethylcellulose fragments not only to oligoxyloglucosides and cello-oligosaccharides but also to oligosaccharides derived from beta-(1,4)-d-glucuronoxylan, beta-(1,6)-d-glucan, mixed-linkage beta-(1,3; 1,4)-d-glucan and at a relatively low rate also to beta-(1,3)-gluco-oligosaccharides. The transglycosylating activity with xyloglucan as donor and cello-oligosaccharides as acceptors represented 4.6%, with laminarioligosaccharides 0.23%, with mixed-linkage beta-(1,3; 1,4)-d-gluco-oligosaccharides 2.06%, with beta-(1,4)-d-glucuronoxylo-oligosaccharides 0.31% and with beta-(1,6)-d-gluco-oligosaccharides 0.69% of that determined with xyloglucan oligosaccharides as acceptors. Based on the sequence homology of tryptic fragments with the sequences of known XTHs, the TmXET(6.3) was classified into group II of the XTH phylogeny of glycoside hydrolase family GH16.


Journal of Mass Spectrometry | 2012

MALDI‐based intact spore mass spectrometry of downy and powdery mildews

Jana Chalupová; Michaela Sedlářová; Michaela Helmel; Pavel Řehulka; Martina Marchetti-Deschmann; Günter Allmaier; Marek Šebela

Fast and easy identification of fungal phytopathogens is of great importance in agriculture. In this context, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool for analyzing microorganisms. This study deals with a methodology for MALDI-TOF MS-based identification of downy and powdery mildews representing obligate biotrophic parasites of crop plants. Experimental approaches for the MS analyses were optimized using Bremia lactucae, cause of lettuce downy mildew, and Oidium neolycopersici, cause of tomato powdery mildew. This involved determining a suitable concentration of spores in the sample, selection of a proper MALDI matrix, looking for the optimal solvent composition, and evaluation of different sample preparation methods. Furthermore, using different MALDI target materials and surfaces (stainless steel vs polymer-based) and applying various conditions for sample exposure to the acidic MALDI matrix system were investigated. The dried droplet method involving solvent evaporation at room temperature was found to be the most suitable for the deposition of spores and MALDI matrix on the target and the subsequent crystallization. The concentration of spore suspension was optimal between 2 and 5 × 10(9) spores per ml. The best peptide/protein profiles (in terms of signal-to-noise ratio and number of peaks) were obtained by combining ferulic and sinapinic acids as a mixed MALDI matrix. A pretreatment of the spore cell wall with hydrolases was successfully introduced prior to MS measurements to obtain more pronounced signals. Finally, a novel procedure was developed for direct mass spectra acquisition from infected plant leaves.


Journal of Mass Spectrometry | 2009

Identification of N‐glycosylation in prolyl endoprotease from Aspergillus niger and evaluation of the enzyme for its possible application in proteomics

Marek Šebela; Pavel Řehulka; Jaromír Kábrt; Helena Řehulková; Tomáš Oždian; Martin Raus; Vojtěch Franc; Josef Chmelík

An acidic prolyl endoprotease from Aspergillus niger was isolated from the commercial product Brewers Clarex to evaluate its possible application in proteomics. The chromatographic purification yielded a single protein band in sodium dodecyl sulfate polyacrylamide gel electrophoresis providing an apparent molecular mass of 63 kDa and a broad peak (m/z 58,061) in linear matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) indicating the glycoprotein nature of the enzyme. Indeed, a colorimetric assessment with phenol and sulfuric acid showed the presence of neutral sugars (9% of weight). The subsequent treatment with N-glycosidase F released a variety of high-mannose type N-glycans, which were successfully detected using MALDI-TOF MS. MALDI-TOF/TOF tandem MS analysis of glycopeptides from a tryptic digest of prolyl endoprotease unraveled the identity of the N-glycosylation site in the primary structure. The data obtained also show that the enzyme is present in its processed form, i.e. without putative signal and propeptide parts. Spectrophotometric measurements demonstrated optimal activity at pH 4.0-4.5 and also high thermostability for the cleavage at the C-terminal part of proline residues. In-solution digestion of standard proteins (12-200 kDa) allowed to evaluate the cleavage specificity. The enzyme acts upon proline and alanine residues, but there is an additional minor cleavage at some other residues like Gly, Leu, Arg, Ser and Tyr. The digestion of a honeybee peptide comprising six proline residues (apidaecin 1A) led to the detection of specific peptides terminated by proline as it was confirmed by MALDI postsource decay analysis.


PLOS ONE | 2014

Apocrine secretion in Drosophila salivary glands: subcellular origin, dynamics, and identification of secretory proteins.

Robert Farkaš; Zuzana Ďatková; Lucia Mentelová; Péter Löw; Denisa Beňová-Liszeková; Milan Beňo; Miklós Sass; Pavel Řehulka; Helena Řehulková; Otakar Raška; Lubomír Kováčik; Jana Šmigová; Ivan Raška; Bernard M. Mechler

In contrast to the well defined mechanism of merocrine exocytosis, the mechanism of apocrine secretion, which was first described over 180 years ago, remains relatively uncharacterized. We identified apocrine secretory activity in the late prepupal salivary glands of Drosophila melanogaster just prior to the execution of programmed cell death (PCD). The excellent genetic tools available in Drosophila provide an opportunity to dissect for the first time the molecular and mechanistic aspects of this process. A prerequisite for such an analysis is to have pivotal immunohistochemical, ultrastructural, biochemical and proteomic data that fully characterize the process. Here we present data showing that the Drosophila salivary glands release all kinds of cellular proteins by an apocrine mechanism including cytoskeletal, cytosolic, mitochondrial, nuclear and nucleolar components. Surprisingly, the apocrine release of these proteins displays a temporal pattern with the sequential release of some proteins (e.g. transcription factor BR-C, tumor suppressor p127, cytoskeletal β-tubulin, non-muscle myosin) earlier than others (e.g. filamentous actin, nuclear lamin, mitochondrial pyruvate dehydrogenase). Although the apocrine release of proteins takes place just prior to the execution of an apoptotic program, the nuclear DNA is never released. Western blotting indicates that the secreted proteins remain undegraded in the lumen. Following apocrine secretion, the salivary gland cells remain quite vital, as they retain highly active transcriptional and protein synthetic activity.


Journal of Proteomics | 2011

Microscale affinity purification of trypsin reduces background peptides in matrix-assisted laser desorption/ionization mass spectrometry of protein digests

Ivo Chamrád; Ondřej Strouhal; Pavel Řehulka; René Lenobel; Marek Šebela

The use of trypsin for protein digestion is hampered by its autolysis and low thermostability. Chemical modifications have been employed to stabilize the enzyme. Modified trypsin (e.g. methylated) usually enables performing digestions at elevated temperatures, but it still produces autolytic peptides. In this work, unmodified bovine trypsin was subjected to a microscale affinity chromatography on Arginine Sepharose (ASE) or Benzamidine Sepharose (BSE), which utilized the principle of active-site ligand binding. Trypsin was retained on the sorbents in ammonium bicarbonate as a binding buffer. After washings to remove unbound impurities, the enzyme was eluted by arginine as a free ligand (from ASE) or by diluted hydrochloric acid (from BSE). MALDI-TOF mass spectrometry confirmed removal of large molecular fragments as well as autolytic and other background peptides. Consequently, the purified trypsin was tested for its performance in procedures of in-gel digestion of protein standards and selected urinary proteins from real samples. It has been shown that the affinity purification of trypsin decreases significantly the number of unmatched peptides in peptide mass fingerprints. The presence of arginine in the digestion buffer was found to reduce intensity of autolytic peptides. As a result, the described purification procedure is applicable in a common proteomic routine.


Journal of Mass Spectrometry | 2009

Improved identification of hordeins by cysteine alkylation with 2-bromoethylamine, SDS-PAGE and subsequent in-gel tryptic digestion

Helena Řehulková; Martina Marchetti-Deschmann; Ernst Pittenauer; Günter Allmaier; Pavel Řehulka

Proteomic-based description of varieties of barley (Hordeum vulgare L.) is a very important task especially in the food and brewing industry. This study is focused on major storage proteins in barley--hordeins--as a group of proteins soluble in alcohol/water mixtures that shows up significant changes in proteomic profiles for different varieties of barley. Unusual amino acid composition of hordeins with low numbers of lysine and arginine in combination with high content of proline and glutamine complicates their identification in a common proteomic workflow, because tryptic digestion produces just a few peptides amenable for successful mass spectrometric analysis. To increase the number of cleavage sites, in this work, cysteines in hordeins were chemically modified with 2-bromoethylamine (BEA) for their conversion into aminoethylcysteines. These mimic lysine residues and are recognized by trypsin as potential cleavage sites (if not followed by a proline residue) on the C-terminal side of the modified cysteine. Small extent of side reactions (towards histidine, N-terminus of the peptide, methionine, and also here the newly discovered reaction towards aminoethylcysteine) during modification with BEA could be observed after a longer period of reaction but this did not hinder the analysis when optimal conditions were used. Application of trypsin for in-gel digestion of hordeins, previously modified chemically with BEA, provided a higher number of short peptides and their subsequent mass spectrometric analysis resulted in an improved identification of hordeins. This approach can also be used for the analysis of other similar protein groups (e.g. gliadins in wheat) or other cysteines containing proteins having a low number of lysine and arginine residues in their primary structure.


Journal of Proteomics | 2012

Analysis of N-glycosylation in maize cytokinin oxidase/dehydrogenase 1 using a manual microgradient chromatographic separation coupled offline to MALDI-TOF/TOF mass spectrometry

Vojtěch Franc; Marek Šebela; Pavel Řehulka; Radka Končitíková; René Lenobel; Catherine Madzak; David Kopečný

Cytokinin oxidase/dehydrogenase (CKO; EC 1.5.99.12) irreversibly degrades the plant hormones cytokinins. A recombinant maize isoenzyme 1 (ZmCKO1) produced in the yeast Yarrowia lipolytica was subjected to enzymatic deglycosylation by endoglycosidase H. Spectrophotometric assays showed that both activity and thermostability of the enzyme decreased after the treatment at non-denaturing conditions indicating the biological importance of ZmCKO1 glycosylation. The released N-glycans were purified with graphitized carbon sorbent and analyzed by MALDI-TOF MS. The structure of the measured high-mannose type N-glycans was confirmed by tandem mass spectrometry (MS/MS) on a Q-TOF instrument with electrospray ionization. Further experiments were focused on direct analysis of sugar binding. Peptides and glycopeptides purified from tryptic digests of recombinant ZmCKO1 were separated by reversed-phase chromatography using a manual microgradient device; the latter were then subjected to offline-coupled analysis on a MALDI-TOF/TOF instrument. Glycopeptide sequencing by MALDI-TOF/TOF MS/MS demonstrated N-glycosylation at Asn52, 63, 134, 294, 323 and 338. The bound glycans contained 3-14 mannose residues. Interestingly, Asn134 was found only partially glycosylated. Asn338 was the sole site to carry large glycan chains exceeding 25 mannose residues. This observation demonstrates that contrary to a previous belief, the heterologous expression in Y. lipolytica may lead to locally hyperglycosylated proteins.

Collaboration


Dive into the Pavel Řehulka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Chmelík

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Eva Stratilová

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Soňa Garajová

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Vladimír Farkaš

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Günter Allmaier

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jiří Stulík

Military Medical Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge