Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pavel S. Dmitrenok is active.

Publication


Featured researches published by Pavel S. Dmitrenok.


Carbohydrate Research | 2009

Structural analysis of a fucoidan from the brown alga Fucus evanescens by MALDI-TOF and tandem ESI mass spectrometry.

Stanislav D. Anastyuk; Natalia M. Shevchenko; Evgeny L. Nazarenko; Pavel S. Dmitrenok; T. N. Zvyagintseva

A fucoidan, a heterogeneous sulfated polysaccharide from the brown alga Fucus evanescens, was depolymerized under solvolytic conditions, and its ethanol-extracted low-molecular-weight fraction was analyzed by MALDI-TOFMS and ESIMS/MS. It was found that the mixture contained unsulfated oligosaccharides including some monosulfated components, which were shown to consist of mainly (1-->3)-linked 2-O-sulfonated fucose residues (from 1 to 4). Minor components of the mixture were shown to contain 2-O- and 4-O-sulfonated xylose and galactose residues. Among them, mixed monosulfonated fucooligosaccharides were detected and characterized: Xyl-(1-->4)-Fuc, Gal-(1-->4)-Fuc, Gal-(1-->4)-Gal-(1-->4)-Fuc, Gal-(1-->4)-Gal. Fucose, galactose, and xylose residues were shown to be mainly 2-O-sulfonated with traces of 4-O-sulfonation. Glucuronic acid was also found as a part of non-sulfated fucooligosaccharides: Fuc-(1-->3)-GlcA, Fuc-(1-->4)-Fuc-(1-->3)-GlcA, Fuc-(1-->3)-Fuc-(1-->4)-Fuc-(1-->3)-GlcA.


Carbohydrate Research | 2010

Structural analysis of a highly sulfated fucan from the brown alga Laminaria cichorioides by tandem MALDI and ESI mass spectrometry.

Stanislav D. Anastyuk; Natalia M. Shevchenko; Eugene L. Nazarenko; Tatyana I. Imbs; Vladimir I. Gorbach; Pavel S. Dmitrenok; T. N. Zvyagintseva

Water-soluble polysaccharide fractions were extracted from the brown alga Laminaria cichorioides. Samples were collected monthly from May to October in Troitsa Bay (Japan Sea, Russia). Analysis showed that the content and monosaccharide composition of the fractions changed with the collection season. Fucoidan was isolated and purified from the most fucose-rich fraction, collected in July, and subjected to autohydrolysis to obtain fucooligosaccharides, suitable for mass-spectrometric analysis. Both ESIMS and MALDI-TOFMS analyses show that multisulfated (up to 3) fucooligosaccharides with polymerization degree n from 2 to 5, including mono- and disulfated-fucose residues, were the major products of autohydrolysis. The structural features of the fucooligosaccharides and their alditol derivatives were elucidated by tandem MALDI-TOFMS and ESIMS. The results obtained allowed us to conclude that fragments of the fucoidan, collected in July, were predominantly linked with a (1→3)-type of linkage and that sulfate groups occupied mostly C-2 or C-2/C-4 of the α-l-fucose residues.


Organic Letters | 2010

Monanchocidin: A New Apoptosis-Inducing Polycyclic Guanidine Alkaloid from the Marine Sponge Monanchora pulchra

Alla G. Guzii; Tatyana N. Makarieva; V. A. Denisenko; Pavel S. Dmitrenok; Alexandra S. Kuzmich; Sergey A. Dyshlovoy; Vladimir B. Krasokhin; Valentin A. Stonik

Monanchocidin (1), a guanidine alkaloid with an unprecedented skeleton system derived from a polyketide precursor, (ω-3)-hydroxy fatty acid, and containing a 2-aminoethyl- and 3-aminopropyl-substituted morpholine hemiketal ring, has been isolated from the sponge Monanhora pulchra. The structure of 1 was assigned on the basis of detailed analysis of 1D and 2D NMR spectra, mass spectrometry, and results of chemical transformations. Compound 1 shows pro-apoptotic and cytoxic activities.


Bioorganicheskaia khimiia | 2007

Polysaccharide and lipid composition of the brown seaweed Laminaria gurjanovae

Natalia M. Shevchenko; Stanislav D. Anastyuk; N. I. Gerasimenko; Pavel S. Dmitrenok; Vladimir V. Isakov; T. N. Zvyagintseva

Polysaccharide and lipid composition of the Pacific brown seaweed Laminaria gurjanovae is determined. Alginic acid is shown to be the main polysaccharide of its biomass (about 28%); it consists of mannuronic and guluronic acid residues at a ratio of 3: 1. The yield of water-soluble polymannuronic acid is low and does not exceed 1.1% of dry biomass. High laminaran content (about 22%) is found, whereas the yield of fucoidan is no more than 3.6%. Laminaran consists of two fractions, soluble and insoluble in cold water, their ratio is 2.5: 1. Insoluble laminaran is a practically linear 1,3-β-D-glucan, and the soluble fraction was shown to be 1,3;1,6-β-D-glucan. The oligosaccharide products of desulfation or partial acidic hydrolysis of fucoidan were studied by MALDI TOF MS; they were found to be fuco- and galactooligosaccharides. The fucoidan is suggested to be a highly sulfated partially acetylated galactofucan (Fuc/Gal is ∼1: 1). The main lipid components of the dried L. gurjanovae are neutral lipids and glyceroglycolipids, whereas phospholipids are found in minor amounts. The main fatty acid components of lipids are 14:0, 16:0, 16:1 ω-7, 18:1 ω-7 and 18:2 ω-6 acids.


Journal of Natural Products | 2008

Constituents of the sea cucumber Cucumaria okhotensis. Structures of okhotosides B1-B3 and cytotoxic activities of some glycosides from this species

Alexandra S. Silchenko; Sergey A. Avilov; Vladimir I. Kalinin; Anatoly I. Kalinovsky; Pavel S. Dmitrenok; Sergey N. Fedorov; Vadim G. Stepanov; Zigang Dong; Valentin A. Stonik

Three new triterpene oligoglycosides, okhotosides B 1 ( 1), B 2 ( 2), and B 3 ( 3), have been isolated from the sea cucumber Cucumaria okhotensis along with the known compounds frondoside A ( 4), frondoside A 1, cucumarioside A 2-5, and koreoside A. The structures of 1- 3 were elucidated on the basis of their spectroscopic data (2D NMR and MS). Compounds 1- 3 were moderately toxic against HeLa tumor cells. Frondoside A ( 4) showed more potent cytotoxicity against THP-1 and HeLa tumor cell lines (with IC 50 values of 4.5 and 2.1 microg/mL, respectively) and decreased both the AP-1-dependent trascriptional activities induced by UVB, EGF, or TPA in JB6-LucAP-1 cells and the EGF-induced NF-kappaB-dependent transcriptional activity in JB6-LucNF-kB cells at doses of about 1 microg/mL. At the same doses, it increased the p53-dependent transcriptional activity in nonactivated JB6-Lucp53 cells and inhibited the colony formation of JB6 P (+) Cl 41 cells activated with EGF (INCC 50 = 0.8 microg/mL).


Carbohydrate Polymers | 2012

ESIMS analysis of fucoidan preparations from Costaria costata, extracted from alga at different life-stages

Stanislav D. Anastyuk; Tatyana I. Imbs; Natalia M. Shevchenko; Pavel S. Dmitrenok; T. N. Zvyagintseva

Four fucoidan fractions from brown alga Costaria costata, collected at different life-stages: vegetative, May (5F2 and 5F3) and generative, July (7F1 and 7F2) collections were characterized. It was found that seaweed synthesizes different set of fucoidans - one with high fucose content and substantial percentage of hexoses and uronic acid and lower sulfate content (7F1, 5F2 and 5F3) and other - highly sulfated galactofucan (7F2). Structural features of fractions 7F2 and 5F3 were predominantly determined by mass spectrometric analysis of low-molecular-weight (LMW) oligosaccharide fragments, obtained by autohydrolysis of 7F2 and mild acid hydrolysis of 5F3 fucoidans. It was found that oligosaccharides from 7F2 fractions were mainly built up of sulfated at C-2 and/or at C-2/C-4 (1→3)-linked α-l-fucopyranose residues. d-Galactose residues, sulfated either at C-2 or C-6, were found as parts of mixed di- and trisaccharides at both termini and, probably, internal. Fucose residues in 5F3 fucoidan fragments were sulfated at C-2 and sometimes at C-4. Galactose residues were sulfated at C-4 and less frequently at C-2. Resistant to hydrolysis fraction was probably a core, built up with fucose, mannose and glucuronic acid. Presumably, oligosaccharide fragments were branches at C-4 of GlcA. They were sulfated at C-2 and sometimes at C-4 (1→3)- and/or (1→4)-linked fucooligosaccharides (sometimes terminated with (1→3)-linked galactose) and sulfated at C-4 or C-2 (1→4)- or, probably, (1→6)-linked galactooligosaccharides, probably, with own branches, formed by (1→2)-linked galactose residues. Unsulfated xylose residues were probably terminal in chains built up of fucose. It was confirmed, that monosaccharide content and structure of fucoidans of vegetative algae changed following its life stage. Generative alga in general produced highly sulfated galactofucan having lower MW along with less sulfated mannoglucuronofucan with higher MW, which was extensively synthesized by vegetative algae.


Journal of Natural Products | 2011

Monanchocidins B-E: polycyclic guanidine alkaloids with potent antileukemic activities from the sponge Monanchora pulchra.

Tatyana N. Makarieva; Ksenya M. Tabakmaher; Alla G. Guzii; V. A. Denisenko; Pavel S. Dmitrenok; Alexandra S. Kuzmich; Hyi-Seung Lee; Valentin A. Stonik

New unusual polycyclic guanidine alkaloids monanchocidins B-E (2-5) along with monanchocidin A (1), which we recently described, were isolated from the Far-Eastern marine sponge Monanchora pulchra. Their structures were established using spectroscopic data and chemical transformations. Compounds 1-5 show potent cytotoxic activities against HL-60 human leukemia cells with IC50 values of 540, 200, 110, 830, and 650 nM, respectively.


Molecular Plant-microbe Interactions | 2008

Suppression of Reactive Oxygen Species and Enhanced Stress Tolerance in Rubia cordifolia Cells Expressing the rolC Oncogene

Victor P. Bulgakov; Dmitry L. Aminin; Yuri N. Shkryl; Tatiana Y. Gorpenchenko; Galina N. Veremeichik; Pavel S. Dmitrenok; Yuri N. Zhuravlev

It is known that expression of the Agrobacterium rhizogenes rolC gene in transformed plant cells causes defense-like reactions, such as increased phytoalexin production and expression of pathogenesis-related proteins. In the present study, we examined whether this phenomenon is associated with increased production of reactive oxygen species (ROS). Single-cell assays based on confocal microscopy and fluorogenic dyes (2,7-dichlorofluorescein diacetate and dihydrorhodamine 123) showed reduced steady-state levels of ROS in rolC-expressing Rubia cordifolia cells as compared with normal cells. Paraquat, a ROS inducer, caused significant ROS elevation in normal cells but had little effect on rolC-transformed cells. Likewise, ROS elevation triggered by a light stress was suppressed in transformed cells. Our results indicate that the rolC gene acts as a ROS suppressor in unstressed cells and its expression prevents stress-induced ROS elevations. We detected a two- to threefold increase in tolerance of rolC-transformed cells to salt, heat, and cold treatments. Simultaneously, rolC-transformed cells maintained permanently active defensive status, as found by measuring isochorismate synthase gene expression and anthraquinone production. Thus, the oncogene provoked multiple effects in which ROS production and phytoalexin production were clearly dissociated.


Journal of Proteomics | 2009

Immunomodulatory effects of holothurian triterpene glycosides on mammalian splenocytes determined by mass spectrometric proteome analysis

Dmitri L. Aminin; Conelia Koy; Pavel S. Dmitrenok; Brigitte Müller-Hilke; Dirk Koczan; Brian Arbogast; Aleksandra A. Silchenko; Vladimir I. Kalinin; Sergey A. Avilov; Valentin A. Stonik; Peter Collin; Hans-Juergen Thiesen; Max L. Deinzer; Michael O. Glocker

Spleen is a prime organ in which immuno-stimulation takes place in mammalians. Proteome analysis was used to investigate the elicited effects on mouse splenocytes upon exposure to holothurian triterpene glycosides. Cucumarioside A(2)-2, and Frondoside A, respectively, have been used to in-vitro stimulate primary splenocyte cultures. Differential protein expression was monitored by 2D gel analysis and proteins in spots of interest were identified by MALDI ToF MS and nano LC-ESI Q-ToF MS/MS, respectively. Differential image analysis of gels from control vs. gels from stimulated primary splenocyte cultures showed that approximately thirty protein spots were differentially expressed. Prime examples of differentially expressed proteins are NSFL1 cofactor p47 and hnRNP K (down-regulated), as well as Septin-2, NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, and GRB2-related adaptor protein 2 (up-regulated). Immuno-analytical assays confirmed differential protein expression. Together with results from proliferation and cell adhesion assays, our results show that cellular proliferation is stimulated by holothurian triterpene glycosides. In conclusion, holothurian triterpene glycosides are thought to express their immuno-stimulatory effects by enhancing the natural cellular defense barrier that is necessary to fight pathogens and for which lymphocytes and splenocytes have to be recruited constantly due to limited lifetimes of B-cells and T-cells in the body.


Journal of Natural Products | 2008

Triterpene Glycosides from Antarctic Sea Cucumbers. 1. Structure of Liouvillosides A1, A2, A3, B1, and B2 from the Sea Cucumber Staurocucumis liouvillei: New Procedure for Separation of Highly Polar Glycoside Fractions and Taxonomic Revision

Alexandr S. Antonov; Sergey A. Avilov; Anatoly I. Kalinovsky; Stanislav D. Anastyuk; Pavel S. Dmitrenok; Evgeny V. Evtushenko; Vladimir I. Kalinin; Alexey V. Smirnov; Sergi Taboada; Manuel Ballesteros; Conxita Avila; Valentin A. Stonik

Five new triterpene glycosides, liouvillosides A1 (1), A2 (2), A3 (3), B1 (4), and B2 (5), have been isolated from the Antarctic sea cucumber Staurocucumis liouviellei along with the known liouvilloside A(6), isolated earlier from the same species, and hemoiedemosides A (7) and B (8), isolated earlier from the Patagonian sea cucumber Hemioedema spectabilis. The isolation was carried out using a new chromatographic procedure including application of ion-pair reversed-phase chromatography followed by chiral chromatography on a cyclodextrin ChiraDex column. The structures of the new glycosides were elucidated using extensive NMR spectroscopy (1H and 13C NMR spectrometry, DEPT, 1H-(1)H COSY, HMBC, HMQC, and NOESY), ESI-FTMS, and CID MS/MS, and chemical transformations. Glycosides 1-3 are disulfated tetraosides and glycosides 4 and 5 are trisulfated tetraosides. Glycosides 2 and 3 contain 3-O-methylquinovose, found for the first time as a natural monosaccharide in sea cucumber glycosides. On the basis of analyses of glycoside structures a taxonomic revision is proposed.

Collaboration


Dive into the Pavel S. Dmitrenok's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valentin A. Stonik

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. A. Denisenko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. A. Kicha

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sergey A. Avilov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. A. Stonik

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge