Pavel Škaloud
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pavel Škaloud.
Molecular Ecology | 2011
Ondřej Peksa; Pavel Škaloud
The distribution patterns of symbiotic algae are thought to be conferred mainly by their hosts, however, they may originate in algal environmental requirements as well. In lichens, predominantly terrestrial associations of fungi with algae or cyanobacteria, the ecological preferences of photobionts have not been directly studied so far. Here, we examine the putative environmental requirements in lichenized alga Asterochloris, and search for the existence of ecological guilds in Asterochloris‐associating lichens. Therefore, the presence of phylogenetic signal in several environmental traits was tested. Phylogenetic analysis based on the concatenated set of internal transcribed spacer rDNA and actin type I intron sequences from photobionts associated with lichens of the genera Lepraria and Stereocaulon (Stereocaulaceae, Ascomycota) revealed 13 moderately to well‐resolved clades. Photobionts from particular algal clades were found to be associated with taxonomically different, but ecologically similar lichens. The rain and sun exposure were the most significant environmental factor, clearly distinguishing the Asterochloris lineages. The photobionts from ombrophobic and ombrophilic lichens were clustered in completely distinct clades. Moreover, two photobiont taxa were obviously differentiated based on their substrate and climatic preferences. Our study, thus reveals that the photobiont, generally the subsidiary member of the symbiotic lichen association, could exhibit clear preferences for environmental factors. These algal preferences may limit the ecological niches available to lichens and lead to the existence of specific lichen guilds.
Molecular Phylogenetics and Evolution | 2010
Pavel Škaloud; Ondrej Peksa
The genus Asterochloris is one of the most common lichen photobionts. We present a molecular investigation of 41 cultured strains, for which nuclear-encoded ITS rDNA and partial actin I sequences were determined. The loci studied revealed considerable differences in their evolutionary dynamics as well as sequence variation. As compared to ITS data, the actin sequences show much greater variation, and the phylogenies yield strong resolution and support of many internal branches. The partitioning of ITS dataset into several regions yielded better node resolution. We recognized 16 well-supported monophyletic lineages, of which one represents the type species of the genus (Asterochloris phycobiontica), and six correspond to species previously classified to the genus Trebouxia (T. erici, T. excentrica, T. glomerata, T. irregularis, T. italiana and T. magna). Only 15% of isolated photobionts considered in our study could be assigned with certainty to previously described species, emphasizing amazing cryptic variability in Asterochloris. Concurrently with the formal delimitation of the genus Asterochloris, we propose new combinations for the former Trebouxia species; furthermore, T. pyriformis is reduced to a synonym of A. glomerata. The present knowledge of global diversity of Asterochloris algae is discussed.
Protist | 2010
Aloisie Poulíčková; Jana Veselá; Jiří Neustupa; Pavel Škaloud
Despite the significance of diatoms in biomonitoring, many aspects of their biodiversity and geographical distribution are poorly understood. Recent evidence from molecular data has shown that traditional cosmopolitan and euryvalent morphospecies are often heterogeneous, containing cryptic or pseudo-cryptic species. It is important to establish whether these more finely differentiated species are also cosmopolitan or show restricted distributions. According to the standard freshwater diatom floras, Navicula cryptocephala and morphologically similar species (N. veneta, N. trivialis, N. gregaria and N. cryptotenella) are common, cosmopolitan freshwater pennate diatoms. Although allopatric and even sympatric populations of N. cryptocephala are extremely similar morphologically, they have previously been found to be highly polymorphic with respect to reproductive and nuclear characteristics; however, molecular data supporting the existence of cryptic diversity were lacking. Phylogenetic analyses (LSU rDNA, ITS of the rRNA operon) of 52 strains of N. cryptocephala-like diatoms confirmed the existence of genetically distinct lineages within N. cryptocephala, and revealed a close relationship between N. trivialis and N. cryptocephala. Cytological, reproductive and morphological variation, investigated by means of landmark-based geometric morphometrics, were in congruence with molecular data. Two pseudo-cryptic species within N. cryptocephala coexist sympatrically and are widely distributed, occurring in both European and Australian lakes.
Frontiers in Ecology and Evolution | 2014
Karolina Fučíková; Frederik Leliaert; Endymion D. Cooper; Pavel Škaloud; Sofie D'hondt; Olivier De Clerck; Carlos Frederico D. Gurgel; Louise A. Lewis; Paul O. Lewis; Juan M. Lopez-Bautista; Charles F. Delwiche; Heroen Verbruggen
Phylogenetic relationships in the green algal phylum Chlorophyta have long been subject to debate, especially at higher taxonomic ranks (order, class). The relationships among three traditionally defined and well-studied classes, Chlorophyceae, Trebouxiophyceae, and Ulvophyceae are of particular interest, as these groups are species-rich and ecologically important worldwide. Different phylogenetic hypotheses have been proposed over the past two decades and the monophyly of the individual classes has been disputed on occasion. Our study seeks to test these hypotheses by combining high throughput sequencing data from the chloroplast genome with increased taxon sampling. Our results suggest that while many of the deep relationships are still problematic to resolve, the classes Trebouxiophyceae and Ulvophyceae are likely not monophyletic as currently defined. Our results also support relationships among several trebouxiophycean taxa that were previously unresolved. Finally, we propose that the common term for the grouping of the three classes, “UTC clade,” be replaced with the term “core Chlorophyta” for the well-supported clade containing Chlorophyceae, taxa belonging to Ulvophyceae and Trebouxiophyceae, and the classes Chlorodendrophyceae and Pedinophyceae.
Journal of Eukaryotic Microbiology | 2013
Pavel Škaloud; Fabio Rindi
Taxa of microbial eukaryotes defined on morphological basis display a large degree of genetic diversity, implying the existence of numerous cryptic species. However, it has been postulated that genetic diversity merely mirrors accumulation of neutral mutations. As a case taxon to study cryptic diversity in protists, we used a widely distributed filamentous genus, Klebsormidium, specifically the lineage E (K. flaccidum/K. nitens complex) containing a number of morphologically similar strains. Fourteen clades were recognized in the phylogenetic analysis based on a concatenated ITS rDNA + rbcL data set of more than 70 strains. The results of inferred character evolution indicated the existence of phylogenetic signal in at least two phenotypic characters (production of hydro‐repellent filaments and morphology of zoosporangia). Moreover, the lineages recovered exhibited strong ecological preferences to one of the three habitat types: natural subaerial substrata, artificial subaerial substrata, and aquatic habitats. We interpret these results as evidence of existence of a high number of cryptic species within the single morphospecies. We consider that the permanent existence of genetically and ecologically well‐defined cryptic species is enabled by the mechanism of selective sweep.
FEMS Microbiology Ecology | 2013
Lucia Muggia; Lucie Vančurová; Pavel Škaloud; Ondrej Peksa; Mats Wedin; Martin Grube
The development of characteristic thallus structures in lichen-forming fungi requires the association with suitable photoautotrophic partners. Previous work suggests that fungi have a specific range of compatible photobionts and that selected algal strains are also correlated with the habitat conditions. We selected the rock-inhabiting crust lichen Protoparmeliopsis muralis, which exhibits high flexibility in algal associations. We present a geographically extended and detailed analysis of algal association patterns including thalli which host superficial algal colonies. We sampled 17 localities in Europe, and investigated the photobiont genotypic diversity within and between thalli and compared the diversity of intrathalline photobionts and externally associate algal communities between washed and unwashed thalli by single-strand conformation polymorphism analyses and ITS sequence data. The results show that (1) photobiont population within the lichen thalli is homogeneous; (2) multiple photobiont genotypes occur within single areoles and lobes of individual lichens; and (3) algal communities which superficially colonize the lichen thalli host taxa known as photobionts in unrelated lichens. Photobiont association patterns are extremely flexible in this ecologically versatile crust-forming lichen. We suggest that lichen surfaces represent a potential temporary niche for free-living stages of lichen photobionts, which could facilitate the establishment of further lichens in the proximal area.
Phycologia | 2011
Jiří Neustupa; Marek Eliáš; Pavel Škaloud; Yvonne Němcová; Lenka Šejnohová
Neustupa J., Eliáš M., Škaloud P., Němcová Y. and Šejnohová L. 2011. Xylochloris irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phycologia 50: 57–66. DOI: 10.2216/08-64.1 The phylogenetic diversity of subaerial coccoid green algae remains still poorly explored. We characterised in detail two unicellular green algae found on tropical trees in Singapore. Light microscopy revealed morphological identity of these two strains. Depending on the age of cultures, the cells were spherical to cylindrical, and ranged in size from 13.5 to 20.5 µm. Each cell contained a pyrenoid-bearing parietal chloroplast that was typically somewhat detached from the plasma membrane on its parietal side. The cells reproduced by 4–16 globular autospores. The 18S rRNA gene sequences of the two strains differed by only a single nucleotide, indicating probable conspecificity. Because the strains were morphologically most comparable to species of the genus Parietochloris, we determined the 18S rRNA gene sequences from authentic strains of three Parietochloris species (P. alveolaris, P. cohaerens and P. ovoidea) for comparison. Molecular phylogenetic analyses placed all five examined strains into the class Trebouxiophyceae. The two novel tropical strains were found to be an independent lineage without an obvious sister group. The type species of the genus Parietochloris, P. alveolaris formed a monophyletic lineage with Parietochloris pseudalveolaris. Finally, P. cohaerens and P. ovoidea fell into another independent clade that also contained Lobosphaera tirolensis, L. incisa and Myrmecia bisecta, indicating that the genus Parietochloris as previously defined is polyphyletic. Based on our morphological and molecular phylogenetic data, we describe the two novel tropical strains as representatives of a new trebouxiophycean genus and species, Xylochloris irregularis gen. et sp. nov.
Environmental Microbiology | 2015
David Ryšánek; Kristýna Hrčková; Pavel Škaloud
Despite considerable research attention during the last 10 years, the distribution and biogeography of protists remain as highly controversial issues. The presumably huge population sizes and unlimited dispersal capabilities should result in protist ubiquity. However, recent molecular investigations suggest that protist communities exhibit strong biogeographic patterns. Here, we examined the biogeographic pattern of a very common green algal genus Klebsormidium. We evaluated the geographic distribution of rbcL genotypes for 190 isolates sampled in six sampling regions located in Europe, North America and Asia. Measures of correlation between genetic and geographic distance matrices revealed a differential distribution pattern on two geographic levels. Globally, the populations were genetically homogeneous; locally, the genotypes were patchily distributed. We hypothesized that a local fine-scale structuring of genotypes may be caused by various ecological factors, in particular, by the habitat differentiation of particular genotypes. Our investigations also identified a large number of new, previously unrecognized lineages. A total of 44 genotypes were identified and more than 66% of these were reported for the first time.
Ecotoxicology and Environmental Safety | 2010
Martin Bačkor; Ondřej Peksa; Pavel Škaloud; Miriam Bačkorová
The photobiont is considered as the more sensitive partner of lichen symbiosis in metal pollution. For this reason the presence of a metal tolerant photobiont in lichens may be a key factor of ecological success of lichens growing on metal polluted substrata. The photobiont inventory was examined for terricolous lichen community growing in Cu mine-spoil heaps derived by historical mining. Sequences of internal transcribed spacer (ITS) were phylogenetically analyzed using maximum likelihood analyses. A total of 50 ITS algal sequences were obtained from 22 selected lichen taxa collected at three Cu mine-spoil heaps and two control localities. Algae associated with Cladonia and Stereocaulon were identified as members of several Asterochloris lineages, photobionts of cetrarioid lichens clustered with Trebouxia hypogymniae ined. We did not find close relationship between heavy metal content (in localities as well as lichen thalli) and photobiont diversity. Presence of multiple algal genotypes in single lichen thallus has been confirmed.
Biologia | 2008
Jiří Neustupa; Pavel Škaloud
We report the species composition of subaerial epixylic algae and cyanobacteria from a South-East Asian mountain rainforest locality in Cibodas, West Java. Green algae (Trebouxiophyceae, Chlorophyceae, Trentepohliales) were dominant and Cyanobacteria were the second most frequent group. We specifically concentrated on the comparison of species composition of closed primary forest and open antropogenic spaces. Trentepohliales and Cyanobacteria dominated in open spaces with higher light intensities, whereas closed forest localities were dominated by trebouxiophycean coccal green algae. There was a significantly higher algal diversity in open spaces than in closed forest samples indicating the limiting effect of light on subaerial algal communities of closed tropical forests. A number of isolated strains and morphotypes probably represent undescribed taxa.