Pavel Talalay
Jilin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pavel Talalay.
Annals of Glaciology | 2007
Sigfus J Johnsen; Steffen B. Hansen; Simon G. Sheldon; Dorthe Dahl-Jensen; Jørgen Peder Steffensen; Laurent Augustin; Paul Journé; Olivier Alemany; Henry Rufli; Jakob Schwander; Nobuhiko Azuma; Hideaki Motoyama; Trevor James Popp; Pavel Talalay; Thorsteinn Thorsteinsson; Frank Wilhelms; V. Zagorodnov
Abstract In the mid-1990s, excellent results from the GRIP and GISP2 deep drilling projects in Greenland opened up funding for continued ice-coring efforts in Antarctica (EPICA) and Greenland (NorthGRIP). The Glaciology Group of the Niels Bohr Institute, University of Copenhagen, was assigned the task of providing drilling capability for these projects, as it had done for the GRIP project. The group decided to further simplify existing deep drill designs for better reliability and ease of handling. The drill design decided upon was successfully tested on Hans Tausen Ice Cap, Peary Land, Greenland, in 1995. The 5.0m long Hans Tausen (HT) drill was a prototype for the ~11m long EPICA and NorthGRIP versions of the drill which were mechanically identical to the HT drill except for a much longer core barrel and chips chamber. These drills could deliver up to 4m long ice cores after some design improvements had been introduced. The Berkner Island (Antarctica) drill is also an extended HT drill capable of drilling 2 m long cores. The success of the mechanical design of the HT drill is manifested by over 12 km of good-quality ice cores drilled by the HT drill and its derivatives since 1995.
Annals of Glaciology | 2007
L. Augustin; Hideaki Motoyama; Frank Wilhelms; Sigfus J Johnsen; Steffen B. Hansen; Pavel Talalay; N. Vasiliev
Abstract For the deep ice-core drilling community, the 2005/06 Antarctic season was an exciting and fruitful one. In three different Antarctic locations, Dome Fuji, EPICA DML and Vostok, deep drillings approached bedrock (the ice–water interface in the case of Vostok), emulating what had previously been achieved at NorthGRIP, Greenland, (summer 2003 and 2004) and at EPICA Dome C2, Antarctica (season 2004/05). For the first time in ice-core drilling history, three different types of drill (KEMS, JARE and EPICA) simultaneously reached the depth of ‘warm ice’ under high pressure. After excellent progress at each site, the drilling rate dropped and the drilling teams had to deal with refrozen ice on cutters and drill heads. Drills have different limits and perform differently. In this comparative study, we examine depth, pressure, temperature, pump flow and cutting speed. Finally, we compare a few parameters of ten different deep drills.
Annals of Glaciology | 2014
Pavel Talalay; Zhengyi Hu; Huiwen Xu; Dahui Yu; Lili Han; Junjie Han; Lili Wang
Abstract The introduction of low-temperature fluid into boreholes drilled in ice sheets helps to remove drilling cuttings and to prevent borehole closure through visco-plastic deformation. Only special fluids, or mixtures of fluids, can satisfy the very strict criteria for deep drilling in cold ice. The effects of drilling fluid on the natural environment are analyzed from the following points of view: (1) occupational safety and health; (2) ozone depletion and global warming; (3) chemical pollution; and (4) biological pollution. Traditional low-temperature drilling fluids (kerosene-based fluids with density additives, ethanol and n-butyl acetate) cannot be qualified as intelligent choices from the safety, environmental and technological standpoints. This paper introduces a new type of low-temperature drilling fluid composed of synthetic ESTISOLTM esters, which are non-hazardous substances. ESTISOLTM 140 mixtures with ESTISOLTM 165 or ESTISOLTM F2887 have an acceptable density and viscosity at low temperature. To avoid the potential for biological contamination of the subglacial environment, the borehole drilling fluid should be treated carefully on the surface.
Annals of Glaciology | 2014
Pavel Talalay; V.S. Zagorodnov; Alexey N Markov; Mikhail Sysoev; Jialin Hong
Abstract The proposed RECoverable Autonomous Sonde (RECAS) will allow analysis and sampling of subglacial water while the subglacial lake remains isolated from the surface. The probe is equipped with two electrically heated melting tips, one on the bottom and one on the top of a cylindrical probe. When one of the tips is powered, the RECAS moves up or down similarly to a hot-point thermal electric drill. The electric power and signal cable is coiled inside the probe on an electric-motor-powered coil. When the lower tip is powered, the probe advances downwards by gravity. In order to move the probe up, power is applied to the upper heated tip and the coil motor pulls the cable, moving the probe upwards and melting the borehole above the probe. A conventional internal combustion engine electric generator on the glacier surface provides 9–10 kW of power to the RECAS via an umbilical cable stored in the probe. Electric power enables a penetration rate of 2.4–2.9m h–1, and thus 4–5 months will be required to reach a depth of 3500 m and return to the surface.
Annals of Glaciology | 2014
Jialin Hong; Pavel Talalay; Mikhail Sysoev; Xiaopeng Fan
Abstract Electromechanical auger core drills are widely used in shallow ice-coring practice on mountain glaciers and polar ice caps and sheets. Generally, these drills are lightweight, can be readily transported to remote drilling sites, are easily installed there and drill with relatively high rates of penetration and low power consumption. During the past few decades, dozens of electromechanical auger drills have been designed. However, the auger options were usually determined by experience, and the main parameters (auger angle and rotation speed) are varied in a wide range from drill to drill. In order to choose the optimal auger parameters, the discrete element method (DEM) is used to analyze the performance of cuttings transportation for different rotation speeds in the range 50–200 rpm and auger angles in the range 15–45°. To improve the efficiency of cuttings transportation, many factors have to be considered (e.g. particle sizes and their variability, ice temperature, material of the core barrel and jacket, and availability of needed driven motor-gears). For the conditions assumed in the present studies, the recommended rotation speed is 100 rpm at auger angles of 35–40°.
Annals of Glaciology | 2014
Huiwen Xu; Lili Han; Pinlu Cao; Mingyi Guo; Junjie Han; Dahui Yu; Pavel Talalay
Abstract A challenge for future deep-ice coring in central Antarctica is to identify an appropriate inert drilling fluid with no undesirable physical or chemical characteristics. The drilling fluids currently in use (kerosene-based fluids with density-increasing additives, ethanol and n-butyl acetate) are not intelligent choices for the future from safety, environmental and some technological standpoints. Recently proposed drilling fluids based upon ESTISOL™ have high viscosity at low temperatures, which severely limits their application in cold environments. This paper presents our research into the application of low-molecular-weight, fatty-acid esters (FAEs), substances commonly used in the fragrance and flavoring industries. According to available data, selected FAEs are not hazardous to human health. Considering density requirements alone, ethyl butyrate and n-propyl propionate best meet our present needs. The viscosities of these two chemicals are also the lowest among studied FAEs, not exceeding 4 mPas at temperatures down to −60°C. Both compounds are highly volatile, and insoluble in water. Such properties are attractive, but the applicability of FAEs to deep, cold, ice drilling can be evaluated only after field-based, practical experiments in test boreholes.
Annals of Glaciology | 2014
Nan Zhang; Chunlei An; Xiaopeng Fan; Guitao Shi; Chuanjin Li; Jingfeng Liu; Zhengyi Hu; Pavel Talalay; Youhong Sun; Yuansheng Li
Abstract The Chinese First Deep Ice-Core Drilling Project DK-1 has commenced at Kunlun station in the Dome A region, the highest plateau in Antarctica. During the first season, within the 28th Chinese National Antarctic Research Expedition (CHINARE) 2011/12 the pilot hole was drilled and reamed in order to install a 100 m deep fiberglass casing. In the next season, 29th CHINARE 2012/13, the deep ice-core drilling system was installed, and all the auxiliary equipment was connected and commissioned. After filling the hole with drilling fluid (n-butyl acetate), three runs of ‘wet’ ice-core drilling were carried out and a depth of 131.24 m was reached. Drilling to the bedrock at the target depth of ∼3100 m is planned to be completed during a further four seasons. We describe the work in progress and the status of equipment for the Dome A drilling project.
Annals of Glaciology | 2014
Pavel Talalay; Xiaopeng Fan; Zhichuan Zheng; Jun Xue; Pinlu Cao; Nan Zhang; Rusheng Wang; Dahui Yu; Chengfeng Yu; Yunlong Zhang; Qi Zhang; Kai Su; Dongdong Yang; Jiewei Zhan
Abstract To prevent spinning of the upper non-rotated part of the electromechanical drill, an ‘anti-torque system’ has to be included in the downhole unit. At the same time, the anti-torque must allow the drill to move up and down the borehole during drilling and tripping operations. Usually the anti-torque system has a blade form of various designs that engages with the borehole wall and counteracts the torque from the stator of the driving motor. This paper presents a review of the different anti-torque systems and test results with selected designs (leaf spring, skate and U-shaped anti-torque systems). Experiments showed that the skate anti-torque system can provide the maximal holding torque between 67 and 267 Nm−1 depending on the skates’ outer diameter and ice temperature, while the leaf spring anti-torque system can provide only 2.5–40 N m−1 (in case of straight contact between the ice and the leaf springs). The total resistance force to axial movement of the skate anti-torque system lies in the range 209–454N if the system is vibrating. For the leaf spring anti-torque system, the total axial resistance force is far less (19–243 N).
Archive | 2016
Pavel Talalay
These drills are small systems that can drill holes to maximum depths of approximately 50 m. Depending on the tasks, portable drills can be either coring or noncoring devices. They are relatively lightweight and do not require a drilling fluid.
Archive | 2016
Pavel Talalay
The main feature of electromechanical cable-suspended drills is the use of an armored cable with a winch instead of a pipe string to provide power to the down-hole motor system and retrieve the down-hole unit. In some instances, a lighter weight reinforced tough-rubber or plastic-sheathed cable can be used for shallow drilling. The use of cable allows a significant reduction in power and material consumption, a decrease in the time of round-trip operations, and a simplification when the cleaning cuttings out of the hole.