Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pavel V. Bondarenko is active.

Publication


Featured researches published by Pavel V. Bondarenko.


Glycobiology | 2011

High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans

Andrew M. Goetze; Y. Diana Liu; Zhongqi Zhang; Bhavana Shah; Edward Lee; Pavel V. Bondarenko; Gregory C. Flynn

Glycan structures attached to the C(H)2 domain of the Fc region of immunoglobulin G (IgG) are essential for specific effector functions but their role in modulating clearance is less clear. Clearance is of obvious importance for therapeutic monoclonal antibodies (Mabs) as it directly impacts efficacy. Here, we study the impact of Fc glycan structure on the clearance of four therapeutic human IgGs (one IgG1 and three IgG2s) in humans. The therapeutic IgGs were affinity purified from serum samples from human pharmacokinetic studies, and changes to the glycan profile over time were determined by peptide mapping employing high-resolution mass spectrometry. Relative levels of high-mannose 5 (M5) glycan decreased as a function of circulation time, whereas other glycans remained constant. These results demonstrate that therapeutic IgGs containing Fc high-mannose glycans are cleared more rapidly in humans than other glycan forms. The quantitative effect of this on pharmacokinetic area under the curve was calculated and shown to be relatively minor for three of the four molecules studied, but, depending on the dosing regimen and the relative level of the high-mannose glycan, this can also have significant impact. High-mannose content of therapeutic Mabs should be considered an important product quality attribute which may affect pharmacokinetic properties of therapeutic antibodies.


Journal of Biological Chemistry | 2008

Human IgG2 Antibodies Display Disulfide-mediated Structural Isoforms

Ming Li; Amy Guo; Zhongqi Zhang; Theresa Martinez; Martin J. Allen; Szilan Fodor; Drew N. Kelner; Gregory C. Flynn; Yaoqing Diana Liu; Pavel V. Bondarenko; Margaret Speed Ricci; Thomas M. Dillon; Alain Balland

In this work, we present studies of the covalent structure of human IgG2 molecules. Detailed analysis showed that recombinant human IgG2 monoclonal antibody could be partially resolved into structurally distinct forms caused by multiple disulfide bond structures. In addition to the presently accepted structure for the human IgG2 subclass, we also found major structures that differ from those documented in the current literature. These novel structural isoforms are defined by the light chain constant domain (CL) and the heavy chain CH1 domain covalently linked via disulfide bonds to the hinge region of the molecule. Our results demonstrate the presence of three main types of structures within the human IgG2 subclass, and we have named these structures IgG2-A, -B, and -A/B. IgG2-A is the known classic structure for the IgG2 subclass defined by structurally independent Fab domains and hinge region. IgG2-B is a structure defined by a symmetrical arrangement of a (CH1-CL-hinge)2 complex with both Fab regions covalently linked to the hinge. IgG2-A/B represents an intermediate form, defined by an asymmetrical arrangement involving one Fab arm covalently linked to the hinge through disulfide bonds. The newly discovered structural isoforms are present in native human IgG2 antibodies isolated from myeloma plasma and from normal serum. Furthermore, the isoforms are present in native human IgG2 with either κ or λ light chains, although the ratios differ between the light chain classes. These findings indicate that disulfide structural heterogeneity is a naturally occurring feature of antibodies belonging to the human IgG2 subclass.


Journal of Biological Chemistry | 2008

Structural and functional characterization of disulfide isoforms of the human IgG2 subclass.

Thomas M. Dillon; Margaret Speed Ricci; Chris Vezina; Gregory C. Flynn; Yaoqing Diana Liu; Douglas S. Rehder; Matthew Plant; Brad Henkle; Yu Li; Songpon Deechongkit; Brian Varnum; Alain Balland; Pavel V. Bondarenko

In the accompanying report ( Wypych, J., Li, M., Guo, A., Zhang, Z., Martinez, T., Allen, M. J., Fodor, S., Kelner, D. N., Flynn, G. C., Liu, Y. D., Bondarenko, P. V., Ricci, M. S., Dillon, T. M., and Balland, A. (2008) J. Biol. Chem. 283, 16194-16205 ), we have identified that the human IgG2 subclass exists as an ensemble of distinct isoforms, designated IgG2-A, -B, and -A/B, which differ by the disulfide connectivity at the hinge region. In this report, we studied the structural and functional properties of the IgG2 disulfide isoforms and compared them to IgG1. Human monoclonal IgG1 and IgG2 antibodies were designed with identical antigen binding regions, specific to interleukin-1 cell surface receptor type 1. In vitro biological activity measurements showed an increased activity of the IgG1 relative to the IgG2 in blocking interleukin-1β ligand from binding to the receptor, suggesting that some of the IgG2 isoforms had lower activity. Under reduction-oxidation conditions, the IgG2 disulfide isoforms converted to IgG2-A when 1 m guanidine was used, whereas IgG2-B was enriched in the absence of guanidine. The relative potency of the antibodies in cell-based assays was: IgG1 > IgG2-A > IgG2 ≫ IgG2-B. This difference correlated with an increased hydrodynamic radius of IgG2-A relative to IgG2-B, as shown by biophysical characterization. The enrichment of disulfide isoforms and activity studies were extended to additional IgG2 monoclonal antibodies with various antigen targets. All IgG2 antibodies displayed the same disulfide conversion, but only a subset showed activity differences between IgG2-A and IgG2-B. Additionally, the distribution of isoforms was influenced by the light chain type, with IgG2λ composed mostly of IgG2-A. Based on crystal structure analysis, we propose that IgG2 disulfide exchange is caused by the close proximity of several cysteine residues at the hinge and the reactivity of tandem cysteines within the hinge. Furthermore, the IgG2 isoforms were shown to interconvert in whole blood or a “blood-like” environment, thereby suggesting that the in vivo activity of human IgG2 may be dependent on the distribution of isoforms.


Journal of the American Society for Mass Spectrometry | 2009

Mass Measurement and Top-Down HPLC/MS Analysis of Intact Monoclonal Antibodies on a Hybrid Linear Quadrupole Ion Trap–Orbitrap Mass Spectrometer

Pavel V. Bondarenko; Tonya Second; Alexander Makarov; Zhongqi Zhang

Mass and top-down analyses of 150-kDa monoclonal immunoglobulin gamma (IgG) antibodies were performed on an Orbitrap analyzer. Three different sample delivery methods were tested including (1) infusion of an off-line desalted IgG sample using nano-electrospray; (2) on-line desalting followed by a step elution with a high percentage of organic solvent; and (3) reversed-phase HPLC separation and on-line mass and top-down analyses of disulfide isoforms of an IgG2 antibody. The accuracy of mass measurements of intact antibody was within ±2 Da (15 ppm). The glycoforms of intact IgG antibodies separated by 162 Da were baseline resolved. In-source fragmentation of the intact antibodies produced mainly 115 residue fragments including N-terminal variable domains of heavy and light chains. The sequence coverage (the number of cleavages) was greatly increased after reduction of disulfide bonds and HPLC/MS/MS analysis of light and heavy chains using collision-induced dissociation in the ion trap of the LTQ-Orbitrap. This is an attractive alternative to peptide mapping for characterization and monitoring of post-translational modifications attributed to minimal sample preparation, high speed of the mass/top-down analysis, and relatively minor method-induced sample modifications.


Analytical Biochemistry | 2009

An improved trypsin digestion method minimizes digestion-induced modifications on proteins

Da Ren; Gary D. Pipes; Dingjiang Liu; Liang-Yu Shih; Andrew C. Nichols; Michael J. Treuheit; David N. Brems; Pavel V. Bondarenko

Trypsin digestion can induce artificial modifications such as asparagine deamidation and N-terminal glutamine cyclization on proteins due to the temperature and the alkaline pH buffers used during digestion. The amount of these artificial modifications is directly proportional to the incubation time of protein samples in the reduction/alkylation buffer and, more important, in the digestion buffer where the peptides are completely solvent exposed. To minimize these artificial modifications, we focused on minimizing the trypsin digestion time by maximizing trypsin activity. Trypsin activity was optimized by the complete removal of guanidine, which is a known trypsin inhibitor, from the digestion buffer. As a result, near complete trypsin digestion was achieved on reduced and alkylated immunoglobulin gamma molecules in 30min. The protein tryptic fragments and their modification products were analyzed and quantified by reversed-phase liquid chromatography/tandem mass spectrometry using an in-line LTQ Orbitrap mass spectrometer. The reduction and alkylation reaction time was also minimized by monitoring the completeness of the reaction using a high-resolution time-of-flight mass spectrometer. Using this 30-min in-solution trypsin digestion method, little protocol-induced deamidation or N-terminal glutamine cyclization product was observed and cleaner tryptic maps were obtained due to less trypsin self-digestion and fewer nonspecific cleavages. The throughput of trypsin digestion was also improved significantly compared with conventional trypsin digestion methods.


Biochemistry | 2008

Isomerization of a Single Aspartyl Residue of Anti-Epidermal Growth Factor Receptor Immunoglobulin γ2 Antibody Highlights the Role Avidity Plays in Antibody Activity

Douglas S. Rehder; Dirk Chelius; Arnold McAuley; Thomas M. Dillon; Gang Xiao; Jill Crouse-Zeineddini; Louisa Vardanyan; Natalie Perico; Venkat Mukku; David N. Brems; Masazumi Matsumura; Pavel V. Bondarenko

A new isoform of the light chain of a fully human monoclonal immunoglobulin gamma2 (IgG2) antibody panitumumab against human epidermal growth factor receptor (EGFR) was generated by in vitro aging. The isoform was attributed to the isomerization of aspartate 92 located between phenylalanine 91 and histidine 93 residues in the antigen-binding region. The isomerization rate increased with increased temperature and decreased pH. A size-exclusion chromatography binding assay was used to show that one antibody molecule was able to bind two soluble extracellular EGFR molecules in solution, and isomerization of one or both Asp-92 residues deactivated one or both antigen-binding regions, respectively. In addition, isomerization of Asp-92 showed a decrease in in vitro potency as measured by a cell proliferation assay with a 32D cell line that expressed the full-length human EGFR. The data indicate that antibodies containing either one or two isomerized residues were not effective in inhibiting EGFR-mediated cell proliferation, and that two unmodified antigen binding regions were needed to achieve full efficacy. For comparison, the potency of an intact IgG1 antibody cetuximab against the same receptor was correlated with the bioactivity of its individual antigen-binding fragments. The intact IgG1 antibody with two antigen-binding fragments was also much more active in suppressing cell proliferation than the individual fragments, similar to the IgG2 results. These results indicated that avidity played a key role in the inhibition of cell proliferation by these antibodies against the human EGFR, suggesting that their mechanisms of action are similar.


Journal of the American Society for Mass Spectrometry | 2008

Comparison of LC and LC/MS Methods for Quantifying N-Glycosylation in Recombinant IgGs

Sandipan Sinha; Gary D. Pipes; Elizabeth M. Topp; Pavel V. Bondarenko; Michael J. Treuheit; Himanshu S. Gadgil

High-performance liquid chromatography (LC) and liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-MS) methods with various sample preparation schemes were compared for their ability to identify and quantify glycoforms in two different production lots of a recombinant monoclonal IgG1 antibody. IgG1s contain a conserved N-glycosylation site in the fragment crystallizable (Fc) subunit. Six methods were compared: (1) LC/ESI-MS analysis of intact IgG, (2) LC/ESI-MS analysis of the Fc fragment produced by limited proteolysis with Lys-C, (3) LC/ESI-MS analysis of the IgG heavy chain produced by reduction, (4) LC/ESI-MS analysis of Fc/2 fragment produced by limited proteolysis and reduction, (5) LC/MS analysis of the glycosylated tryptic fragment (293EEQYNSTYR301) using extracted ion chromatograms, and (6) normal phase HPLC analysis of N-glycans cleaved from the IgG using PNGase F. The results suggest that MS quantitation based on the analysis of Fc/2 (4) is accurate and gives results that are comparable to normal phase HPLC analysis of N-glycans (6).


Journal of the American Society for Mass Spectrometry | 2006

Improving Mass Accuracy of High Performance Liquid Chromatography/ Electrospray Ionization Time-of-Flight Mass Spectrometry of Intact Antibodies

Himanshu S. Gadgil; Gary D. Pipes; Thomas M. Dillon; Michael J. Treuheit; Pavel V. Bondarenko

The glycosylation profile of intact antibody due to the galactose and fucose heterogeneity in the N-linked sugars was determined with instrument resolution of 5000 and 10,000. After deconvolution of electrospray ionization mass spectra to complete convergence, several extra peaks appeared in addition to the peaks observed in the original mass spectra. The artificial peaks were avoided if deconvolution was stopped after a smaller number of iterations. A standard antibody was used as an external calibrant to minimize mass measurement errors during long-period experiments. Precision of four consecutive LC/MS measurements of the same antibody was 10 ppm (±1.5 Da). By using this approach, the masses of 11 intact antibodies were measured. All antibodies containing N-terminal glutamines had a negative mass shift due to the formation of pyroglutamate (−17 Da). Although the pyroglutamate variant of intact antibody was not resolved from the unmodified variant, this modification led to a mass shift proportional to the percentage of N-terminal pyroglutamate. By accurately measuring the mass shift we were able to quantify the abundance of pyroglutamic acid on intact antibodies. Mass accuracy in measuring different antibodies was below 30 ppm (±4 Da). The accurate mass measurement can be an effective tool for monitoring chemical degradations in therapeutic antibodies.


Biochemistry | 2013

G/U and Certain Wobble Position Mismatches as Possible Main Causes of Amino Acid Misincorporations

Zhongqi Zhang; Bhavana Shah; Pavel V. Bondarenko

A mass spectrometry-based method was developed to measure amino acid substitutions directly in proteins down to a level of 0.001%. When applied to recombinant proteins expressed in Escherichia coli, monoclonal antibodies expressed in mammalian cells, and human serum albumin purified from three human subjects, the method revealed a large number of amino acid misincorporations at levels of 0.001-0.1%. The detected misincorporations were not random but involved a single-base difference between the codons of the corresponding amino acids. The most frequent base differences included a change from G to A, corresponding to a G(mRNA)/U(tRNA) base pair mismatch during translation. We concluded that under balanced nutrients, G(mRNA)/U(tRNA) mismatches at any of the three codon positions and certain additional wobble position mismatches (C/U and/or U/U) are the main causes of amino acid misincorporations. The hypothesis was tested experimentally by monitoring the levels of misincorporation at several amino acid sites encoded by different codons, when a protein with the same amino acid sequence was expressed in E. coli using 13 different DNA sequences. The observed levels of misincorporation were different for different codons and agreed with the predicted levels. Other less frequent misincorporations may occur due to G(DNA)/U(mRNA) mismatch during transcription, mRNA editing, U(mRNA)/G(tRNA) mismatch during translation, and tRNA mischarging.


Analytical Chemistry | 2008

Characterization of IgG1 immunoglobulins and peptide-Fc fusion proteins by limited proteolysis in conjunction with LC-MS.

Gerd R. Kleemann; Jill Beierle; Andrew C. Nichols; Thomas M. Dillon; Gary D. Pipes; Pavel V. Bondarenko

A combinatory approach for the characterization of post-translational and chemical modifications in high molecular weight therapeutic proteins like antibodies and peptide-Fc fusion proteins (MW > or = 50 000 Da) is presented. In this approach, well-established techniques such as limited proteolysis, reversed-phase (RP) high-performance liquid chromatography (HPLC), and in-line mass spectrometry (MS) were combined for the characterization of a monoclonal IgG1 antibody and three different peptide-Fc fusion proteins. The one commonality of these molecules is the presence of a similarly accessible lysine residue either located in the flexible hinge region of the antibody or in the flexible linker of the peptide-Fc fusion proteins. Applying limited proteolysis using endoproteinase Lys-C resulted in the predominant cleavage C-terminal of this lysine residue. The created fragments, two identical Fab domain fragments and one Fc domain fragment derived from the IgG1 antibody and one Fc domain fragment and each of the three individual peptide moieties generated from the peptide-Fc fusion proteins, were readily accessible for complete separation by RP-HPLC and detailed characterization by in-line MS analysis. This approach facilitated rapid detection of a variety of chemical modifications such as methionine oxidation, disulfide bond scrambling, and reduction as well as the characterization of various carbohydrate chains. We found limited proteolysis followed by RP-HPLC-MS to be less time-consuming for sample preparation, analysis, and data interpretation than traditional peptide mapping procedures. At the same time, the reduced sample complexity provided superior chromatographic and mass spectral resolution than the analysis of the corresponding intact molecules or a large number of enzymatically generated fragments.

Collaboration


Dive into the Pavel V. Bondarenko's collaboration.

Researchain Logo
Decentralizing Knowledge