Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pavel Zehtindjiev is active.

Publication


Featured researches published by Pavel Zehtindjiev.


Science | 2015

Chronic infection. Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds.

Muhammad Asghar; Dennis Hasselquist; Bengt Hansson; Pavel Zehtindjiev; Helena Westerdahl; Staffan Bensch

Chronic malaria shortens telomeres Chronic infections are assumed to cause little damage to the host, but is this true? Migrant birds can pick up various species of malaria parasite while overwintering in the tropics. After initial acute malaria, migrant great reed warblers, which nest in Sweden and overwinter in Africa, are asymptomatically infected for life. Asghar et al. discovered that these cryptically infected birds laid fewer eggs and were less successful at rearing healthy offspring than uninfected birds. Furthermore, infected birds had significantly shorter telomeres (the protective caps on the ends of chromosomes) and produced chicks with shortened telomeres. Science, this issue p. 436 Chronic asymptomatic infection correlates with reduced breeding success and shortened telomeres in great reed warblers. Recovery from infection is not always complete, and mild chronic infection may persist. Although the direct costs of such infections are apparently small, the potential for any long-term effects on Darwinian fitness is poorly understood. In a wild population of great reed warblers, we found that low-level chronic malaria infection reduced life span as well as the lifetime number and quality of offspring. These delayed fitness effects of malaria appear to be mediated by telomere degradation, a result supported by controlled infection experiments on birds in captivity. The results of this study imply that chronic infection may be causing a series of small adverse effects that accumulate and eventually impair phenotypic quality and Darwinian fitness.


Experimental Parasitology | 2008

Dynamics of parasitemia of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler Acrocephalus arundinaceus

Pavel Zehtindjiev; Mihaela Ilieva; Helena Westerdahl; Bengt Hansson; Gediminas Valkiūnas; Staffan Bensch

Little is known about the development of infection of malaria parasites of the genus Plasmodium in wild birds. We used qPCR, targeting specific mitochondrial lineages of Plasmodium ashfordi (GRW2) and Plasmodium relictum (GRW4), to monitor changes in intensities of parasitemia in captive great reed warblers Acrocephalus arundinaceus from summer to spring. The study involved both naturally infected adults and experimentally infected juveniles. The experiment demonstrated that P. ashfordi and P. relictum lineages differ substantially in several life-history traits (e.g. prepatent period and dynamics of parasitemia) and that individual hosts show substantial differences in responses to these infections. The intensity of parasitemia of lineages in mixed infections co-varied positively, suggesting a control mechanism by the host that is general across the parasite lineages. The intensity of parasitemia for individual hosts was highly repeatable suggesting variation between the host individuals in their genetic or acquired control of the infections. In future studies, care must be taken to avoid mixed infections in wild caught donors, and when possible use mosquitoes for the experiments as inoculation of infectious blood ignores important initial stages of the contact between the bird and the parasite.


Parasitology Research | 2008

Polymerase chain reaction-based identification of Plasmodium (Huffia) elongatum, with remarks on species identity of haemosporidian lineages deposited in GenBank

Gediminas Valkiunas; Pavel Zehtindjiev; Dimitar Dimitrov; Asta Krizanauskiene; Tatjana A. Iezhova; Staffan Bensch

Numerous lineages of avian malaria parasites of the genus Plasmodium have been deposited in GenBank. However, only 11 morphospecies of Plasmodium have been linked to these lineages. Such linking is important because it provides opportunities to combine the existing knowledge of traditional parasitology with novel genetic information of these parasites obtained by molecular techniques. This study linked one mitochondrial cytochrome b (cyt b) gene lineage with morphospecies Plasmodium (Huffia) elongatum, a cosmopolitan avian malaria parasite which causes lethal disease in some birds. One species of Plasmodium (mitochondrial cyt b gene lineage P-GRW6) was isolated from naturally infected adult great reed warblers (Acrocephalus arundinaceus) and inoculated to one naive juvenile individual of the same host species. Heavy parasitaemia developed in the subinoculated bird, which enabled identification of the morphospecies and deposition of its voucher specimens. The parasite of this lineage belongs to P. elongatum. Illustrations of blood stages of this parasite are given. Other lineages closely related to P. elongatum were identified. The validity of the subgenus Huffia is supported by phylogenetic analysis. Mitochondrial cyt b gene lineages, with GenBank accession nos. AF069611 and AY733088, belong to Plasmodium cathemerium and P. elongatum, respectively; these lineages have been formerly attributed to P. elongatum and P. relictum, respectively. Some other incorrect species identifications of avian haematozoa in GenBank have been identified. We propose a strategy to minimise the number of such mistakes in GenBank in the future.


Parasitology Research | 2007

Linkage between mitochondrial cytochrome b lineages and morphospecies of two avian malaria parasites, with a description of Plasmodium (Novyella) ashfordi sp. nov

Gediminas Valkiūnas; Pavel Zehtindjiev; Olof Hellgren; Mihaela Ilieva; Tatjana A. Iezhova; Staffan Bensch

Numerous lineages of avian malaria parasites of the genus Plasmodium have been deposited in GenBank. However, only seven morphospecies have been linked to these lineages. This study linked two molecular sequences with morphospecies of malaria parasites. Two species of Plasmodium (mitochondrial cytochrome b gene lineages P-GRW2 and P-GRW4) were isolated from naturally infected adult great reed warblers (Acrocephalus arundinaceus) and inoculated to naive juvenile individuals of the same host species. Heavy parasitemia developed in the subinoculated birds, which enable identification of the species and deposition of their voucher specimens. Parasites of the lineage P-GRW2 were described as a new species, Plasmodium (Novyella) ashfordi, which is characterized primarily by the fan-like mature erythrocytic meronts containing seven to eight merozoites and the terminal position of clumped pigment granules in the gametocytes. Illustrations of the blood stages of the new species and Plasmodium (Haemamoeba) relictum (lineage P-GRW4) are given. The parasites of both lineages are transmitted in Africa and probably not in northern Europe. Other lineages closely related to P. ashfordi and P. relictum are identified. This study establishes the value of PCR-based identification of avian malaria parasites.


Molecular Ecology | 2011

Broad‐scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations

Aaron W. Schrey; M Grispo; M Awad; M B Cook; Earl D. McCoy; Henry R. Mushinsky; Tamer Albayrak; Staffan Bensch; Terry Burke; L K Butler; Roi Dor; H B Fokidis; Henrik Jensen; T Imboma; M M Kessler-Rios; Alfonso Marzal; Ian R. K. Stewart; Helena Westerdahl; David F. Westneat; Pavel Zehtindjiev; Lynn B. Martin

Introduced species offer unique opportunities to study evolution in new environments, and some provide opportunities for understanding the mechanisms underlying macroecological patterns. We sought to determine how introduction history impacted genetic diversity and differentiation of the house sparrow (Passer domesticus), one of the most broadly distributed bird species. We screened eight microsatellite loci in 316 individuals from 16 locations in the native and introduced ranges. Significant population structure occurred between native than introduced house sparrows. Introduced house sparrows were distinguished into one North American group and a highly differentiated Kenyan group. Genetic differentiation estimates identified a high magnitude of differentiation between Kenya and all other populations, but demonstrated that European and North American samples were differentiated too. Our results support previous claims that introduced North American populations likely had few source populations, and indicate house sparrows established populations after introduction. Genetic diversity also differed among native, introduced North American, and Kenyan populations with Kenyan birds being least diverse. In some cases, house sparrow populations appeared to maintain or recover genetic diversity relatively rapidly after range expansion (<50 years; Mexico and Panama), but in others (Kenya) the effect of introduction persisted over the same period. In both native and introduced populations, genetic diversity exhibited large‐scale geographic patterns, increasing towards the equator. Such patterns of genetic diversity are concordant with two previously described models of genetic diversity, the latitudinal model and the species diversity model.


Acta Parasitologica | 2010

Genetic diversity of avian blood parasites in SE Europe: Cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Bulgaria

Dimitar Dimitrov; Pavel Zehtindjiev; Staffan Bensch

We used a nested PCR protocol to examine the genetic diversity of cytochrome b (cyt b) lineages from blood parasites of the genera Plasmodium and Haemoproteus in birds in Bulgaria. In total, 460 birds of 43 species and 14 families (mostly passerines) were examined for the presence of infections. Of them, 267 were recognised as infected with haemosporidian parasites. Mixed infections were recorded in 24 individuals (9%). Besides the 24 individuals with mix infections, 114 (43%) were positive for Plasmodium spp. and 129 (48%) for Haemoproteus spp. We identified 52 genetic lineages of haemosporidian parasites: 38 of Haemoproteus and 14 of Plasmodium. Twelve new cyt b lineages of Haemoproteus were recorded; they occurred in the following hosts: grey-faced woodpecker (Picus canus), golden oriole (Oriolus oriolus), jay (Garrulus glandarius), barred warbler (Sylvia nisoria), song thrush (Turdus philomelos), spotted flycatcher (Muscicapa striata), spanish sparrow (Passer hispaniolensis), hawfinch (Coccothraustes coccothraustes), and cirl bunting (Emberiza cirlus). We also detected 22 new host records for previously known lineages. The most common lineage was SGS1 (Plasmodium relictum), which had a total prevalence of 14% and occurred in 8 host species belonging to 5 families. Three of the cyt b lineages of genus Haemoproteus (DURB1, DURB2 and SYNIS2) showed more than 5% divergence from all described morphologically lineages. These lineages probably represent at least 2 different morphospecies which remains to be identified.


Parasitology Research | 2014

Molecular characterization of five widespread avian haemosporidian parasites (Haemosporida), with perspectives on the PCR-based detection of haemosporidians in wildlife

Gediminas Valkiūnas; Vaidas Palinauskas; Mikas Ilgūnas; Dovilė Bukauskaitė; Dimitar Dimitrov; Rasa Bernotienė; Pavel Zehtindjiev; Mihaela Ilieva; Tatjana A. Iezhova

Haemosporidians (Haemosporida) are cosmopolitan in birds. Over 250 species of these blood parasites have been described and named; however, molecular markers remain unidentified for the great majority of them. This is unfortunate because linkage between DNA sequences and identifications based on morphological species can provide important information about patterns of transmission, virulence, and evolutionary biology of these organisms. There is an urgent need to remedy this because few experts possess the knowledge to identify haemosporidian species and few laboratories are involved in training these taxonomic skills. Here, we describe new mitochondrial cytochrome b markers for the polymerase chain reaction (PCR)-based detection of four widespread species of avian Haemoproteus (Haemoproteus hirundinis, Haemoproteus parabelopolskyi, Haemoproteus pastoris, Haemoproteus syrnii) and 1 species of Plasmodium (Plasmodium circumflexum). Illustrations of blood stages of the reported species are given, and morphological and phylogenetic analyses identify the DNA lineages that are associated with these parasites. This study indicates that morphological characters, which have been traditionally used in taxonomy of avian haemosporidian parasites, have a phylogenetic value. Perspectives on haemosporidian diagnostics using microscopic and PCR-based methods are discussed, particularly the difficulties in detection of light parasitemia, coinfections, and abortive parasite development. We emphasize that sensitive PCR amplifies more infections than can be transmitted; it should be used carefully in epidemiology studies, particularly in wildlife parasitology research. Because molecular studies are describing remarkably more parasite diversity than previously expected, the need for traditional taxonomy and traditional biological knowledge is becoming all the more crucial. The linkage of molecular and morphological approaches is worth more of the attention of researchers because this approach provides new knowledge for better understanding insufficiently investigated lethal diseases caused by haemosporidian infections, particularly on the exoerythrocytic (tissue) and vector stages. That requires close collaboration between researchers from different fields with a common interest.


PLOS ONE | 2008

Postglacial colonisation patterns and the role of isolation and expansion in driving diversification in a passerine bird.

Bengt Hansson; Dennis Hasselquist; Maja Tarka; Pavel Zehtindjiev; Staffan Bensch

Pleistocene glacial cycles play a major role in diversification and speciation, although the relative importance of isolation and expansion in driving diversification remains debated. We analysed mitochondrial DNA sequence data from 15 great reed warbler (Acrocephalus arundinaceus) populations distributed over the vast Eurasian breeding range of the species, and revealed unexpected postglacial expansion patterns from two glacial refugia. There were 58 different haplotypes forming two major clades, A and B. Clade A dominated in Western Europe with declining frequencies towards Eastern Europe and the Middle East, but showed a surprising increase in frequency in Western and Central Asia. Clade B dominated in the Middle East, with declining frequencies towards north in Central and Eastern Europe and was absent from Western Europe and Central Asia. A parsimonious explanation for these patterns is independent postglacial expansions from two isolated refugia, and mismatch distribution analyses confirmed this suggestion. Gene flow analyses showed that clade A colonised both Europe and Asia from a refugium in Europe, and that clade B expanded much later and colonised parts of Europe from a refugium in the Middle East. Great reed warblers in the eastern parts of the range have slightly paler plumage than western birds (sometimes treated as separate subspecies; A. a. zarudnyi and A. a. arundinaceus, respectively) and our results suggest that the plumage diversification took place during the easterly expansion of clade A. This supports the postglacial expansion hypothesis proposing that postglacial expansions drive diversification in comparatively short time periods. However, there is no indication of any (strong) reproductive isolation between clades and our data show that the refugia populations became separated during the last glaciation. This is in line with the Pleistocene speciation hypothesis invoking that much longer periods of time in isolation are needed for speciation to occur.


Journal of Parasitology | 2012

A New Morphologically Distinct Avian Malaria Parasite That Fails Detection By Established Polymerase Chain Reaction–Based Protocols for Amplification of the Cytochrome B Gene

Pavel Zehtindjiev; Asta Križanauskienė; Staffan Bensch; Vaidas Palinauskas; Muhammad Asghar; Dimitar Dimitrov; Sergio Scebba; Gediminas Valkiūnas

Abstract: Plasmodium polymorphum n. sp. (Haemosporida, Plasmodiidae) was found in the skylark, Alauda arvensis (Passeriformes: Alaudidae), during autumnal migration in southern Italy. This organism is illustrated and described based on the morphology of its blood stages. The most distinctive feature of this malaria parasite is the clear preference of its blood stages (trophozoites, meronts, and gametocytes) for immature red blood cells, including erythroblasts. Based on preference of erythrocytic meronts for immature red blood cells, P. polymorphum is most similar to species of the subgenus Huffia. This parasite can be readily distinguished from all other bird malaria parasites, including Plasmodium (Huffia) spp., due to preferential development and maturation of its gametocytes in immature red blood cells, a unique character for avian Plasmodium spp. In addition, the margins of nuclei in blood stages of P. polymorphum are markedly smooth and distinct; this is also a distinct diagnostic feature of this parasite. Plasmodium polymorphum has been recorded only in the skylark; it is probably a rare parasite, whose host range and geographical distribution remain unclear. Microscopic examination detected a light infection of Plasmodium relictum (lineage GRW11, parasitemia of <0.01%) in the same sample with P. polymorphum; the latter parasite clearly predominated (3.5% parasitemia). However, experienced researchers were unable to detect sequences of mitochondrial cytochrome b gene (cyt b) of P. polymorphum from the microscopically positive sample by using published and newly designed primers for DNA amplification of avian Plasmodium spp. The light parasitemia of P. relictum was easily detectable using several polymerase chain reaction (PCR)–based assays, but P. polymorphum was undetectable in all applied assays. Quantitative PCR also showed the presence of light parasitemia (0.06%) of the lineage GRW11 in this sample. This supports the conclusion that the morphologically distinct parasite observed along with P. relictum and predominant in the sample is genetically dissimilar from the lineage GRW11 based on cyt b sequence. In samples with co-infections, general PCR protocols tend to favor the amplification of the parasite with the higher parasitemia or the amplification with the best matching sequence to the primers. Because the parasitemia of P. polymorphum was >50-fold higher than that of P. relictum and several different primers were tested, we suggest that the failure to amplify P. polymorphum is a more complex problem than why co-infections are commonly overlooked in PCR-based studies. We suggest possible explanations of these results and call for additional research on evolution of mitochondrial genome of hemosporidian parasites.


Experimental Parasitology | 2015

Plasmodium spp.: An experimental study on vertebrate host susceptibility to avian malaria.

Dimitar Dimitrov; Vaidas Palinauskas; Tatjana A. Iezhova; Rasa Bernotienė; Mikas Ilgūnas; Dovile Bukauskaitė; Pavel Zehtindjiev; Mihaela Ilieva; Anatoly P. Shapoval; Casimir V. Bolshakov; Mikhail Yu. Markovets; Staffan Bensch; Gediminas Valkiūnas

The interest in experimental studies on avian malaria caused by Plasmodium species has increased recently due to the need of direct information about host-parasite interactions. Numerous important issues (host susceptibility, development of infection, the resistance and tolerance to avian malaria) can be answered using experimental infections. However, specificity of genetically different lineages of malaria parasites and their isolates is largely unknown. This study reviews recent experimental studies and offers additional data about susceptibility of birds to several widespread cytochrome b (cyt b) lineages of Plasmodium species belonging to four subgenera. We exposed two domesticated avian hosts (canaries Serinus canaria and ducklings Anas platyrhynchos) and also 16 species of common wild European birds to malaria infections by intramuscular injection of infected blood and then tested them by microscopic examination and PCR-based methods. Our study confirms former field and experimental observations about low specificity and wide host-range of Plasmodium relictum (lineages SGS1 and GRW11) and P. circumflexum (lineage TURDUS1) belonging to the subgenera Haemamoeba and Giovannolaia, respectively. However, the specificity of different lineages and isolates of the same parasite lineage differed between species of exposed hosts. Several tested Novyella lineages were species specific, with a few cases of successful development in experimentally exposed birds. The majority of reported cases of mortality and high parasitaemia were observed during parasite co-infections. Canaries were susceptible mainly for the species of Haemamoeba and Giovannolaia, but were refractory to the majority of Novyella isolates. Ducklings were susceptible to three malaria infections (SGS1, TURDUS1 and COLL4), but parasitaemia was light (<0.01%) and transient in all exposed birds. This study provides novel information about susceptibility of avian hosts to a wide array of malaria parasite lineages, outlining directions for future experimental research on various aspects of biology and epidemiology of avian malaria.

Collaboration


Dive into the Pavel Zehtindjiev's collaboration.

Top Co-Authors

Avatar

Mihaela Ilieva

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dimitar Dimitrov

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steffen Hahn

Swiss Ornithological Institute

View shared research outputs
Top Co-Authors

Avatar

Tamara Emmenegger

Swiss Ornithological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karina Ivanova

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Silke Bauer

Swiss Ornithological Institute

View shared research outputs
Top Co-Authors

Avatar

Aneliya Bobeva

Bulgarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge