Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pavle Spasojević is active.

Publication


Featured researches published by Pavle Spasojević.


Biomacromolecules | 2017

Simple One-Pot Synthesis of Fully Biobased Unsaturated Polyester Resins Based on Itaconic Acid

Vesna V. Panic; Sanja Šešlija; Ivanka G. Popović; Vuk D. Spasojevic; Aleksandar Popovic; Vladimir B. Nikolic; Pavle Spasojević

For the preparation of fully biobased unsaturated polyester resins (UPRs), the replacement of styrene with alternate nonpetroleum-based monomers turned out to be one of the most challenging tasks. Its complexity lies in the fact that reactive diluents (RD) have to have low viscosity and volatility, good compatibility with prepolymer, and capability to homopolymerize and copolymerize with its unsaturations. In this context, we directed our efforts to develop fully biobased UPRs using the dialkyl itaconates as an alternative to styrene. Therefore, a series of 100% biobased UPRs were prepared from itaconic acid and 1,2-propandiol and diluted by dialkyl itaconates. The resins were characterized by Fourier transform infrared spectroscopy, NMR, volatility, and viscosity measurements, while the cured samples were characterized by dynamic mechanical properties, thermomechanical analysis, thermogravimetric analysis data, and tensile tests. The influence of RD structure on the properties of cured samples was discussed in detail. It was shown that the prepared resins had evaporation rates of dialkyl itaconates of several orders of magnitude less compared to styrene. The cured resins with dimethyl itaconate showed comparable or even better thermal and mechanical properties compared to the one with styrene. This investigation showed that itaconic acid and dialkyl itaconates are promising bioresources for the preparation of fully biobased UPRs for mass consumption.


RSC Advances | 2015

High performance alkyd resins synthesized from postconsumer PET bottles

Pavle Spasojević; Vladimir V. Panić; Jasna V. Džunuzović; Aleksandar D. Marinković; Albert J. J. Woortman; Katja Loos; Ivanka G. Popović

The glycolytic recycling of waste PET presents a challenge for the production of secondary value-added products, such as alkyd resins. A way to overcome the unsatisfactory mechanical, drying and chemical resistance properties of alkyds obtained from difunctional glycolyzates was proposed. Waste PET was glycolyzed using multifunctional alcohols: glycerol (G), trimethylolethane (TME), trimethylolpropane (TMP) and pentaerythritol (PE), giving tetra- and hexa-functional glycolyzates and, for comparison, using diethylene glycol (DEG), propylene glycol (PG) and dipropylene glycol (DPG) giving di-functional glycolyzates. The obtained glycolyzates were examined by 1H and 13C NMR, FTIR spectroscopy and elemental analysis and further used in the synthesis of alkyd resins. The properties of the prepared alkyd resins (acid, hydroxyl and iodine values, color, average molar masses and molar mass distributions, viscosity, drying time, hardness, flexibility, gloss, adhesion and chemical resistance) were investigated with respect to the functionality and the structure of the used glycolyzates. Alkyd resins derived from multifunctional glycolyzates (TME and TMP) showed considerably enhanced properties compared to those produced from difunctional glycolyzates and also to conventional general purpose resins.


International Journal of Polymer Science | 2015

The Mechanical Properties of a Poly(methyl methacrylate) Denture Base Material Modified with Dimethyl Itaconate and Di-n-butyl Itaconate

Pavle Spasojević; Milorad Zrilić; Vesna V. Panic; Dragoslav Stamenković; Sanja Šešlija; Sava J. Velickovic

This study investigates a wide range of clinically relevant mechanical properties of poly(methyl methacrylate) (PMMA) denture base materials modified with di-methyl itaconate (DMI) and di-n-butyl itaconate (DBI) in order to compare them to a commercial PMMA denture base material. The commercial denture base formulation was modified with DMI and DBI by replacing up to 10 wt% of methyl methacrylate (MMA) monomer. The specimens were prepared by standard bath curing process. The influence of the itaconate content on hardness, impact strength, tensile, and thermal and dynamic mechanical properties was investigated. It is found that the addition of di-n-alkyl itaconates gives homogenous blends that show decreased glass transition temperature, as well as decrease in storage modulus, ultimate tensile strength, and impact fracture resistance with increase in the itaconate content. The mean values of surface hardness show no significant change with the addition of itaconates. The magnitude of the measured values indicates that the poly(methyl methacrylate) (PMMA) denture base material modified with itaconates could be developed into a less toxic, more environmentally and patient friendly product than commercial pure PMMA denture base material.


Journal of The Serbian Chemical Society | 2015

Poly(methyl methacrylate) denture base materials modified with ditetrahydrofurfuryl itaconate: Significant applicative properties

Pavle Spasojević; Vesna V. Panic; Sanja Šešlija; Vladimir M. Nikolic; Ivanka G. Popović; Sava J. Velickovic

The aim of this work was to examine the possibility of modification of commercial denture base materials with itaconic acid esters, in order to obtain materials with lower toxicity and higher biocompatibility. Despite their relatively higher price compared to methacrylates, itaconic acid and itaconates are materials of choice for environmentally friendly applications, because they are not produced from petrochemical sources, but from plant products. A commercial system based on poly(methyl methacrylate) was modified using ditetrahydrofurfuryl itaconate (DTHFI), whereby the ratio of DTHFI was varied from 2.5 to 10 % by weight. Copolymerization was confirmed using FTIR spectroscopy, while SEM analysis showed the absence of micro defects and pores in the structure. The effects of the itaconate content on the absorption of fluids, the residual monomer content, thermal, dynamic-mechanical and mechanical properties (hardness, toughness, stress and elongation at break) were investigated. It was found that the addition of DTHFI significantly reduced the amount of residual methyl methacrylate, which made these materials less toxic. It was shown that increasing the DTHFI content resulted in materials with decreased glass transition temperatures, as well as with decreased storage mod ulus, ultimate tensile strength and impact fracture resistance; however the mech anical properties were in the rang prescribed by ADA standards, and the materials could be used in practice. The deterioration in mechanical properties was therefore worthwhile in order to gain lower toxicity of the leached monomer.


Hemijska Industrija | 2011

The effect of the accelerated aging on the mechanical properties of the PMMA denture base materials modified with itaconates

Pavle Spasojević; Milorad Zrilić; Dragoslav Stamenković; Sava J. Velickovic

This study evaluated the effect of accelerated ageing on the tensile strength, elongation at break, hardness and Charpy impact strength in commercial PMMA denture base material modified with di-methyl itaconate (DMI) and di-n-butyl itaconate (DBI). The samples were prepared by modifying commercial formulation by addition of itaconates in the amounts of 2.5, 5, 7.5 and 10% by weight. After polymerization samples were characterized by FT-IR and DSC analysis while residual monomer content was determined by HPLC-UV. Accelerated ageing was performed at 70°C in water for periods of 7, 15 and 30 days. Tensile measurements were performed using Instron testing machine while the hardness of the polymerized samples was measured by Shore D method. The addition of itaconate significantly reduces the residual MMA. Even at the small amounts of added itaconates (2.5%) the residual MMA content was reduced by 50%. The increase of itaconate content in the system leads to the decrease of residual MMA. It has been found that the addition of di-n-alkyl itaconates decreases the tensile strength, hardness and Charpy impact strength and increases elongation at break. Samples modified with DMI had higher values of tensile strength, hardness and Charpy impact strength compared to the ones modified with DBI. This is explained by the fact that DBI has longer side chain compared to DMI. After accelerated ageing during a 30 days period the tensile strength decreased for all the investigated samples. The addition of DMI had no effect on the material ageing and the values for the tensile strength of all of the investigated samples decreased around 20%, while for the samples modified with DBI, the increase of the amount of DBI in the polymerized material leads to the higher decrease of the tensile strength after the complete accelerated ageing period od 30 days, aulthough after the first seven days of the accelerated ageing the values of hardness have increased for all of the investigated samples. Such behavior is explained as the result of the polymer chain relaxation. The values of Charpy impact strength decreased after accelerated ageing. The amount of added DMI have no affect on the decrease of Charpy impact strength after accelerated ageing, the decrease was similar as for pure PMMA. The decrease of Charpy impact strength increased as the amount of added DBI increases.


International Journal of Biological Macromolecules | 2018

Physico-chemical evaluation of hydrophobically modified pectin derivatives: Step toward application

Sanja Šešlija; Pavle Spasojević; Vesna V. Panic; Monika Dobrzyńska-Mizera; Barbara Immirzi; Jasmina Stevanović; Ivanka G. Popović

Abstract Present study reports synthesis and physico-chemical evaluation of hydrophobically modified pectin derivatives, obtained by reacting of pectin with di-acyl chlorides (glutaryl and sebacoyl chloride). Depending on length of the inserted carbon chains, the acylation resulted in possible formation of mono-grafted (isolated chains) and bi-grafted (chemical gels) structures. The structural features of obtained derivatives were investigated using FTIR spectroscopy, confirming the successful synthesis. The concentrated aqueous solutions of modified pectin showed interesting rheological properties, having lower values of apparent viscosity compared to neat pectin. Since the GPC analysis indicated that no degradation occurred, the viscosity decrease was explained by more heterogeneous organization within modified pectin solutions (microparticles together with sticky polymer entanglement). A shift in particle size distribution proved that proposed modifications also affected pectin solution properties in diluted regime. The modified samples turned to be more sensible to thermal degradation than neat pectin, whereby the increasing size of flexible acyl chains attached to a polymer backbone reduced the glass transition temperature. The hydrophobicity of obtained derivatives was evaluated by sessile drop and du Nouy ring methods. It was found that acylation enhanced hydrophobicity of the pectin molecule, while hydrophobically associative character turned to be inconsistent in aqueous and non-aqueous environment.


Journal of Applied Polymer Science | 2009

Semi‐interpenetrating networks based on poly(N‐isopropyl acrylamide) and poly(N‐vinylpyrrolidone)

Dragana L. Zugic; Pavle Spasojević; Zoran S. Petrović; Jasna Djonlagic


Journal of Applied Polymer Science | 2011

Influence of microwave heating on the polymerization kinetics and application properties of the PMMA dental materials

Pavle Spasojević; Borivoj Adnađević; Sava J. Velickovic; Jelena Jovanovic


Journal of Physical Chemistry C | 2015

Methacrylic Acid Based Polymer Networks with a High Content of Unfunctionalized Nanosilica: Particle Distribution, Swelling, and Rheological Properties

Vesna V. Panic; Pavle Spasojević; Tijana S. Radoman; Enis Dzunuzovic; Ivanka G. Popović; Sava J. Velickovic


Polymer Composites | 2017

Effect of the modified silica Nanofiller on the Mechanical Properties of Unsaturated Polyester Resins Based on Recycled Polyethylene Terephthalate

Jelena Rusmirović; Tijana S. Radoman; Enis S. Džunuzović; Jasna V. Džunuzović; Jasmina Markovski; Pavle Spasojević; Aleksandar D. Marinković

Collaboration


Dive into the Pavle Spasojević's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge