Pavol Stajanca
Bundesanstalt für Materialforschung und -prüfung
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pavol Stajanca.
Optical Materials Express | 2016
Andrea Fasano; Getinet Woyessa; Pavol Stajanca; Christos Markos; Alessio Stefani; Kristian Fog Nielsen; Henrik Koblitz Rasmussen; Katerina Krebber; Ole Bang
Here we present the fabrication of a solid-core microstructured polymer optical fiber (mPOF) made of polycarbonate (PC), and report the first experimental demonstration of a fiber Bragg grating (FBG) written in a PC optical fiber. The PC used in this work has a glass transition temperature of 145°C. We also characterize the mPOF optically and mechanically, and further test the sensitivity of the PC FBG to strain and temperature. We demonstrate that the PC FBG can bear temperatures as high as 125°C without malfunctioning. In contrast, polymethyl methacrylate-based FBG technology is generally limited to temperatures below 90°C.
Optical Fiber Technology | 2018
L. Curilla; Ignas Astrauskas; A. Pugzlys; Pavol Stajanca; Dariusz Pysz; F. Uherek; Andrius Baltuska; I. Bugar
We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrodinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction Ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.
Proceedings of SPIE | 2016
Pavol Stajanca; Amedee Lacraz; Kyriacos Kalli; Marcus Schukar; Katerina Krebber
In this work, the potential of fiber Bragg gratings (FBGs) in low-loss perfluorinated polymer optical fibers (PF-POFs) is explored. The FBG is femtosecond-inscribed in a commercial multi-mode (MM) PF-POF based on Cytop polymer. Femtosecond inscription leads to creation of a highly saturated grating with a number of higher order reflection peaks visible throughout the visible and near-infrared spectral region. For 2 mm long FBG having a pitch of 2.2895 μm, a total of nine higher-order MM reflection bands are visible spanning from 1548 nm (4th order) to 520 nm (12th order). Strain sensitivity was measured for 6 peak bands in 500-900 nm region, where relatively low cost CCD based spectrometers and broadband LEDs are available. Strain sensitivity increases almost linearly with increasing initial peak wavelength, growing from 4.82 ± 0.02 nm/% measured for 12th order peak at 517 nm to 8.12 ± 0.04 nm/% measured for 7th order peak at 883 nm. These values correspond to roughly 20 % higher sensitivity than silica FBGs exhibit in this spectral range. The gratings in PF-POFs combine the higher strain sensitivity and low-loss operation while maintaining the mechanical advantages of polymer optical fibers. Therefore, they hold a high potential for considerable broadening of polymer optical fiber Bragg gratings application range.
optical fiber sensors conference | 2017
Pavol Stajanca; Katerina Krebber
Sensitivity of two commercial perfluorinated (PF) polymer optical fibers (POFs) to gamma radiation was measured, compared and exploited for dosimetry purposes. Fiber radiation induced attenuation (RIA) was found to be highly wavelength dependent and pronounced towards the UV part of the spectrum. PF-POFs were shown to be highly radiation sensitive and RIA-based on-line radiation monitoring with sensitivity as high as 135 dBm−1/kGy was demonstrated at 460 nm with co-extruded PF-POF. In addition, thanks to low inherent attenuation in the near-infrared region, possibility of distributed radiation detection with PF-POFs was demonstrated for the first time, utilizing optical time domain reflectometry.
Sensors | 2017
Pavol Stajanca; Katerina Krebber
Due to some of their unique properties, optical fiber dosimeters are attractive and extensively researched devices in several radiation-related areas. This work evaluates the performance and potential of commercial perfluorinated polymer optical fibers (PF-POFs) for radiation monitoring applications. Gamma radiation-induced attenuation (RIA) of two commercial PF-POFs is evaluated in the VIS spectral region. Influence of a dose rate and temperature on RIA measurement is investigated, along with defect stability and measurement repeatability. Co-extruded PF-POFs are identified as more suitable for radiation monitoring applications due to lower dose-rate dependence. With co-extruded PF-POF, RIA measurement holds potential for highly-sensitive radiation monitoring with good reproducibility. The results show that operation in the blue part of the spectrum provides most favorable performance in terms of the largest nominal radiation sensitivity, lower temperature, and dose-rate dependence as well as higher defect stability. We demonstrate for the first time to our knowledge, that PF-POFs can be used for distributed detection of radiation with doses down to tens of Grays. The off-the-shelf, user-friendly PF-POF could be of interest as a cheap, disposable sensor for various applications, especially of a more qualitative nature.
Sensors | 2018
Pavol Stajanca; Sebastian Chruscicki; Tobias Homann; Stefan Seifert; Dirk Schmidt; Abdelkarim Habib
In the presented work, the potential of fiber-optic distributed acoustic sensing (DAS) for detection of small gas pipeline leaks (<1%) is investigated. Helical wrapping of the sensing fiber directly around the pipeline is used to increase the system sensitivity for detection of weak leak-induced vibrations. DAS measurements are supplemented with reference accelerometer data to facilitate analysis and interpretation of recorded vibration signals. The results reveal that a DAS system using direct fiber application approach is capable of detecting pipeline natural vibrations excited by the broadband noise generated by the leaking medium. In the performed experiment, pipeline vibration modes with acceleration magnitudes down to single μg were detected. Simple leak detection approach based on spectral integration of time-averaged DAS signals in frequency domain was proposed. Potential benefits and limitations of the presented monitoring approach were discussed with respect to its practical applicability. We demonstrated that the approached is potentially capable of detection and localization of gas pipeline leaks with leak rates down to 0.1% of the pipeline flow volume and might be of interest for monitoring of short- and medium-length gas pipelines.
Micro-Structured and Specialty Optical Fibres V | 2018
Pavol Stajanca; Samuel Pötschke; Katerina Krebber; Ievgeniia Topolniak
Solution doping of off-the-shelf plastic optical fibers (POFs) represents rather simple and cheap way for preparing custom cladding-doped POFs (CD-POFs) with short to medium lengths. CD-POFs are especially attractive for environmental sensing applications, but might be of interest for illumination task as well. In this work, the proposed doping technique is tested with three different commercial low-cost polymethyl methacrylate (PMMA) POFs; Eska CK-40 and Eska GK-40 from Mitsubishi Rayon and Raytela PGU-FB1000 from Toray. The aim of the work is to aid the selection of the most suitable fiber yielding highest optical quality of prepared CD-POFs. Firstly, the optimal doping times are determined for the individual fiber types using short fiber samples. Secondly, longer 10 m CD-POFs are prepared from all tested fibers using the optimized doping procedure. Finally, attenuation of pristine POFs and prepared CD-POFs is measured using optical time domain reflectometry in order to characterize the impacts of the doping on fiber optical properties. In addition, the importance of post-doping drying procedure for CD-POF optical performance is investigated as well. The results suggest that, although doping of all tested fibers is generally feasible, Eska CK-40 is the most suitable candidate with regard to the doping efficiency and fiber post-doping performance.
Sixth European Workshop on Optical Fibre Sensors (EWOFS'2016) | 2016
Pavol Stajanca; L. Mihai; D. Sporea; D. Negut; Katerina Krebber
The sensitivity of low-loss perfluorinated polymer optical fiber (PF-POF) to gamma radiation is investigated for on-line radiation monitoring purposes. The radiation-induced attenuation (RIA) of a commercial PF-POF based on Cytop material is measured in the visible spectral region. The fiber RIA shows strong wavelength dependence with rapid increase towards the blue side of the spectrum. The wide range of radiation sensitivities is available via careful selection of appropriate monitoring wavelength. The accessible sensitivities span from 1.6 ± 0.2 dBm-1/kGy measured at 750 nm to 18.3 ± 0.7 dBm-1/kGy measured at 420 nm. The fairly high radiation sensitivity as well as its wide tunability makes the fiber a promising candidate for a broad range of applications.
Proceedings of SPIE | 2016
Andrea Fasano; Getinet Woyessa; Pavol Stajanca; Christos Markos; Alessio Stefani; Kristian Fog Nielsen; Henrik Koblitz Rasmussen; Katerina Krebber; Ole Bang
We describe the fabrication of a polycarbonate (PC) micro-structured polymer optical fiber (mPOF) and the writing of fiber Bragg gratings (FBGs) in it to enable strain and temperature measurements. We demonstrate the photosensitivity of a dopant-free PC fiber by grating inscription using a UV laser. We further show that PC Bragg gratings can be extended up to at least 3% without affecting the initial functionality of the micro-structured fiber. The response of PC FBGs to temperature up to 125°C is also investigated. Polycarbonate has good mechanical properties and its high temperature resistance might extend the range of application of polymeric FBGs.
Proceedings of SPIE | 2016
Dan Sporea; Laura Mihai; Daniel Neguţ; Pavol Stajanca; Katerina Krebber
In this paper, we present the first results regarding the on-line monitoring of gamma-ray exposure effects on a commercial multi-mode perfluorinated polymer optical fiber (PF-POF), type GigaPOF-50SR from Chromis Fiberoptics. Our focus was to evaluate on-line the radiation induced attenuation (RIA) over a wide spectral range (320 nm – 1700 nm), in order to assess the fiber’s radiation hardness and its possible use in radiation detection. An Ocean Optics QE65000 high sensitivity spectrometer and a StellarNet near-IR spectrometer were used to cover the spectral ranges 200 nm – 1μm and 900 nm – 1.6 μm, respectively. Electron paramagnetic resonance was used to monitor the recovery of the irradiation induced centers at room temperature. The study indicated that the optical fiber can be used as radiation monitor at low dose rates by measuring the attenuation in the UV, while higher dose rates irradiation can be observed by RIA monitoring at specific wavelengths in the visible spectral range.