Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pavol Sulo is active.

Publication


Featured researches published by Pavol Sulo.


FEBS Journal | 2007

Fermentative lifestyle in yeasts belonging to the Saccharomyces complex

Annamaria Merico; Pavol Sulo; Jure Piškur; Concetta Compagno

The yeast Saccharomyces cerevisiae is characterized by its ability to: (a) degrade glucose or fructose to ethanol, even in the presence of oxygen (Crabtree effect); (b) grow in the absence of oxygen; and (c) generate respiratory‐deficient mitochondrial mutants, so‐called petites. How unique are these properties among yeasts in the Saccharomyces clade, and what is their origin? Recent progress in genome sequencing has elucidated the phylogenetic relationships among yeasts in the Saccharomyces complex, providing a framework for the understanding of the evolutionary history of several modern traits. In this study, we analyzed over 40 yeasts that reflect over 150 million years of evolutionary history for their ability to ferment, grow in the absence of oxygen, and generate petites. A great majority of isolates exhibited good fermentation ability, suggesting that this trait could already be an intrinsic property of the progenitor yeast. We found that lineages that underwent the whole‐genome duplication, in general, exhibit a fermentative lifestyle, the Crabtree effect, and the ability to grow without oxygen, and can generate stable petite mutants. Some of the pre‐genome duplication lineages also exhibit some of these traits, but a majority of the tested species are petite‐negative, and show a reduced Crabtree effect and a reduced ability to grow in the absence of oxygen. It could be that the ability to accumulate ethanol in the presence of oxygen, a gradual independence from oxygen and/or the ability to generate petites were developed later in several lineages. However, these traits have been combined and developed to perfection only in the lineage that underwent the whole‐genome duplication and led to the modern Saccharomyces cerevisiae yeast.


Fems Yeast Research | 2010

Mitochondrial genome from the facultative anaerobe and petite‐positive yeast Dekkera bruxellensis contains the NADH dehydrogenase subunit genes

Emanuel Procházka; Silvia Poláková; Jure Piškur; Pavol Sulo

The progenitor of the Dekkera/Brettanomyces clade separated from the Saccharomyces/Kluyveromyces clade over 200 million years ago. However, within both clades, several lineages developed similar physiological traits. Both Saccharomyces cerevisiae and Dekkera bruxellensis are facultative anaerobes; in the presence of excess oxygen and sugars, they accumulate ethanol (Crabtree effect) and they both spontaneously generate respiratory-deficient mutants (petites). In order to understand the role of respiratory metabolism, the mitochondrial DNA (mtDNA) molecules of two Dekkera/Brettanomyces species were analysed. Dekkera bruxellensis mtDNA shares several properties with S. cerevisiae, such as the large genome size (76 453 bp), and the organization of the intergenic sequences consisting of spacious AT-rich regions containing a number of hairpin GC-rich cluster-like elements. In addition to a basic set of the mitochondrial genes coding for the components of cytochrome oxidase, cytochrome b, subunits of ATPase, two rRNA subunits and 25 tRNAs, D. bruxellensis also carries genes for the NADH dehydrogenase complex. Apparently, in yeast, the loss of this complex is not a precondition to develop a petite-positive, Crabtree-positive and anaerobic nature. On the other hand, mtDNA from a petite-negative Brettanomyces custersianus is much smaller (30 058 bp); it contains a similar gene set and has only short intergenic sequences.


Fems Yeast Research | 2003

High-rate evolution of Saccharomyces sensu lato chromosomes

Mário Špírek; Jun Yang; Casper Groth; Randi Føns Petersen; Rikke Breinhold Langkjær; Elena S. Naumova; Pavol Sulo; Gennadi I. Naumov; Jure Piškur

Forty isolates belonging to the Saccharomyces sensu lato complex were analyzed for one nuclear and two mitochondrial sequences, and for their karyotypes. These data are useful for description and definition of yeast species based on the phylogenetic species concept. The deduced phylogenetic relationships among isolates based on the nuclear and mitochondrial sequences were usually similar, suggesting that horizontal transfer/introgression has not been frequent. The highest degree of polymorphism was observed at the chromosome level. Even isolates which had identical nuclear and mitochondrial sequences often exhibited variation in the number and size of their chromosomes. Apparently, yeast chromosomes have been frequently reshaped and therefore also the position of genes has been dynamic during the evolutionary history of yeasts.


International Journal of Systematic and Evolutionary Microbiology | 2005

Geotrichum bryndzae sp. nov., a novel asexual arthroconidial yeast species related to the genus Galactomyces

Pavol Sulo; Michal Laurencik; Silvia Poláková; Gabriel Minarik; Elena Sláviková

Ten strains of an asexual arthroconidial yeast species were isolated from Bryndza, a traditional Slovak artisanal sheep cheese, which was manufactured from raw milk during a 4-month summer production period at two Slovakian sites (the northern RuZomberok and the central-southern Tisovec areas). Sequence comparison of the D1/D2 domains of the large-subunit rRNA gene revealed that this yeast represents a novel species of the genus Geotrichum, which contains anamorphs of the ascogenous genus Galactomyces, for which the name Geotrichum bryndzae sp. nov. is proposed (type culture CCY 16-2-1T=NRRL Y-48450T=CBS 11176T). The novel species is most closely related to Geotrichum silvicola NRRL Y-27641T, although yeasts with identical or very similar sequences have been found throughout the world.


International Journal of Food Microbiology | 2008

The diversity of eukaryotic microbiota in the traditional Slovak sheep cheese — Bryndza

M. Laurenčík; Pavol Sulo; Elena Sláviková; E. Piecková; M. Seman; L. Ebringer

We investigated the occurrence and diversity of yeasts and filamentous fungi in bryndza an artisanal Slovak soft spreadable cheese prepared from raw sheep milk or from a mixture of sheep and cow milk. Samples collected during four months of the summer production period from two locations (northern and southern parts of central Slovakia) contained 10(5)-10(7) (cfu) yeasts and about 10(2) (cfu) of mold per gram of wet weight. Further characterization by conventional taxonomy and sequence comparison of D1/D2 region from 26S rRNA gene revealed Mucor circinelloides v. Tieghem as the predominant filamentous fungus. A novel Geotrichum sp. together with Kluyveromyces (K. lactis/K. marxianus) was identified as the most abundant yeast species. Occasionally other yeasts, such as Candida inconspicua, Candida silvae, Pichia fermentans and Trichosporon domesticum were found. Conventional taxonomy readily identified isolates to the genus level, but DNA sequence comparison was capable of discriminating them at the species level.


Fems Yeast Research | 2012

A complete sequence of Saccharomyces paradoxus mitochondrial genome that restores the respiration in S. cerevisiae

Emanuel Procházka; Filip Franko; Silvia Poláková; Pavol Sulo

We determined the complete sequence of 71 355-bp-long mitochondrial genome from Saccharomyces paradoxus entirely by direct sequencing of purified mitochondrial DNA (mtDNA). This mtDNA possesses the same features as its close relative Saccharomyces cerevisiae - A + T content 85.9%, set of genes coding for the three components of cytochrome oxidase, cytochrome b, three subunits of ATPase, both ribosomal subunits, gene for ribosomal protein, rnpB gene, tRNA package (24) and yeast genetic code. Genes are interrupted by nine group I and group II introns, two of which are in positions unknown in S. cerevisiae, but recognized in Saccharomyces pastorianus. The gene products are related to S. cerevisiae, and the identity of amino acid residues varies from 100% for cox2 to 83% for rps3. The remarkable differences from S. cerevisiae are (1) different gene order (translocation of trnF-trnT1-trnV-cox3-trnfM-rnpb-trnP and transposition of trnW-rns), (2) occurrence of two unusual GI introns, (3) eight active ori elements, and (4) reduced number of GC clusters and divergent intergenic spacers. Despite these facts, the sequenced S. paradoxus mtDNA introduced to S. cerevisiae was able to support the respiratory function to the same extent as the original mtDNAs.


Frontiers in Genetics | 2015

Post-zygotic sterility and cytonuclear compatibility limits in S. cerevisiae xenomitochondrial cybrids

Mário Špírek; Silvia Poláková; Katarína Jatzová; Pavol Sulo

Nucleo-mitochondrial interactions, particularly those determining the primary divergence of biological species, can be studied by means of xenomitochondrial cybrids, which are cells where the original mitochondria are substituted by their counterparts from related species. Saccharomyces cerevisiae cybrids are prepared simply by the mating of the ρ0 strain with impaired karyogamy and germinating spores from other Saccharomyces species and fall into three categories. Cybrids with compatible mitochondrial DNA (mtDNA) from Saccharomyces paradoxus CBS 432 and Saccharomyces cariocanus CBS 7994 are metabolically and genetically similar to cybrids containing mtDNA from various S. cerevisiae. Cybrids with mtDNA from other S. paradoxus strains, S. cariocanus, Saccharomyces kudriavzevii, and Saccharomyces mikatae require a period of adaptation to establish efficient oxidative phosphorylation. They exhibit a temperature-sensitive phenotype, slower growth rate on a non-fermentable carbon source and a long lag phase after the shift from glucose. Their decreased respiration capacity and reduced cytochrome aa3 content is associated with the inefficient splicing of cox1I3β, the intron found in all Saccharomyces species but not in S. cerevisiae. The splicing defect is compensated in cybrids by nuclear gain-of-function and can be alternatively suppressed by overexpression of MRP13 gene for mitochondrial ribosomal protein or the MRS2, MRS3, and MRS4 genes involved in intron splicing. S. cerevisiae with Saccharomyces bayanus mtDNA is unable to respire and the growth on ethanol–glycerol can be restored only after mating to some mit− strains. The nucleo-mitochondrial compatibility limit of S. cerevisiae and other Saccharomyces was set between S. kudriavzevii and S. bayanus at the divergence from S. cerevisiae about 15 MYA. The MRS1-cox1 S. cerevisiae/S. paradoxus cytonuclear Dobzhansky–Muller pair has a neglible impact on the separation of species since its imperfection is compensated for by gain-of-function mutation.


Fems Yeast Research | 2003

The efficiency of functional mitochondrial replacement in Saccharomyces species has directional character.

Pavol Sulo; Mário Špírek; Andrea Šoltésová; Gaelle Marinoni; Jure Piškur

Optimal interactions among nuclear and mitochondria-coded proteins are required to assemble functional complexes of mitochondrial oxidative phosphorylation. The communication between the nuclear and mitochondrial genomes has been studied by transplacement of mitochondria from related species into mutants devoid of mitochondrial DNA (rho0). Recently we have reported that the mitochondria transferred from Saccharomyces paradoxus restored partially the respiration in Saccharomyces cerevisiae rho0 mutants. Here we present evidence that the S. cerevisiae mitochondria completely salvage from respiration deficiency, not only in conspecific isolates but also in S. paradoxus. The respiratory capacity in less-related species can be recovered exclusively in the presence of S. cerevisiae chromosomes. The efficiency of the re-established oxidative phosphorylation did not rely on the presence of introns in the S. cerevisiae mitochondrial DNA. Our results suggest that, apart from evolutionary distance, the direction of mitochondrial replacement could play a significant role in installing the complete (wild-type-like) interaction between mitochondria and nuclei from different species.


Biochimica et Biophysica Acta | 1986

Quantitative structure-activity relationship of carbonylcyanide phenylhydrazones as uncouplers of mitochondrial oxidative phosphorylation

Štefan Baláž; Ernest Šturdík; Edita Ďurčová; Marián Antalík; Pavol Sulo

The dependence of the uncoupling activity in the series of 16 carbonylcyanide phenylhydrazones on their physico-chemical properties (partition coefficient, dissociation constant and rate constant for reaction with thiols) is investigated using two physiologically based models, one for protonophoric mechanism of uncoupling and the other assuming the covalent modification of a membrane constituent to be the key step in this process. As indicated by uptake experiments, at the given conditions a lipophilic-hydrophilic equilibrium is attained without any loss of the compounds via chemical reactions. Using this fact to reduce the number of adjustable parameters, a better fit to the data on stimulation of respiration is obtained with the former (protonophoric) model.


Current Genetics | 2000

Functional co-operation between the nuclei of Saccharomyces cerevisiae and mitochondria from other yeast species

Mário Špírek; Anton Horváth; Jure Piškur; Pavol Sulo

Abstract We elaborated a simple method that allows the transfer of mitochondria from collection yeasts to Saccharomyces cerevisiae. Protoplasts prepared from different yeasts were fused to the protoplasts of the ade2-1, ura3-52, kar1-1,ρ0 strain of S. cerevisiae and were selected for respiring cybrids on plates containing 5-fluoroorotic acid and a non-fermentable carbon source. The identity of putative cybrids was assessed by restriction analysis of mitochondrial DNA, pulse field electrophoresis and tetrad analysis. In the comprehensive screening, only mitochondrial genomes from synonymous species (S. italicus, S. oviformis, S. capensis and S. chevalieri) exhibited complete compatibility with S. cerevisiae nuclei. The closely related S. douglasii mitochondrial genome could also partially restore respiration-deficiency in ρ0S. cerevisiae, whereas mitochondrial genomes from phylogenetically less related species could not.

Collaboration


Dive into the Pavol Sulo's collaboration.

Top Co-Authors

Avatar

Marián Antalík

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mário Špírek

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Štefan Baláž

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Guo-Jian Gao

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton Horváth

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaelle Marinoni

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge