Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pawan Bir Kohli is active.

Publication


Featured researches published by Pawan Bir Kohli.


Nature | 2011

Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7

Ingrid E. Wertz; Saritha Kusam; Cynthia Lam; Toru Okamoto; Wendy Sandoval; Daniel J. Anderson; Elizabeth Helgason; James A. Ernst; Mike Eby; Jinfeng Liu; Lisa D. Belmont; Joshua S. Kaminker; Karen O’Rourke; Kanan Pujara; Pawan Bir Kohli; Adam R. Johnson; Mark L. Chiu; Jennie R. Lill; Peter K. Jackson; Wayne J. Fairbrother; Somasekar Seshagiri; Mary J. C. Ludlam; Kevin G. Leong; Erin C. Dueber; Heather Maecker; David C. S. Huang; Vishva M. Dixit

Microtubules have pivotal roles in fundamental cellular processes and are targets of antitubulin chemotherapeutics. Microtubule-targeted agents such as Taxol and vincristine are prescribed widely for various malignancies, including ovarian and breast adenocarcinomas, non-small-cell lung cancer, leukaemias and lymphomas. These agents arrest cells in mitosis and subsequently induce cell death through poorly defined mechanisms. The strategies that resistant tumour cells use to evade death induced by antitubulin agents are also unclear. Here we show that the pro-survival protein MCL1 (ref. 3) is a crucial regulator of apoptosis triggered by antitubulin chemotherapeutics. During mitotic arrest, MCL1 protein levels decline markedly, through a post-translational mechanism, potentiating cell death. Phosphorylation of MCL1 directs its interaction with the tumour-suppressor protein FBW7, which is the substrate-binding component of a ubiquitin ligase complex. The polyubiquitylation of MCL1 then targets it for proteasomal degradation. The degradation of MCL1 was blocked in patient-derived tumour cells that lacked FBW7 or had loss-of-function mutations in FBW7, conferring resistance to antitubulin agents and promoting chemotherapeutic-induced polyploidy. Additionally, primary tumour samples were enriched for FBW7 inactivation and elevated MCL1 levels, underscoring the prominent roles of these proteins in oncogenesis. Our findings suggest that profiling the FBW7 and MCL1 status of tumours, in terms of protein levels, messenger RNA levels and genetic status, could be useful to predict the response of patients to antitubulin chemotherapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Structure of the pseudokinase–kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition

Patrick J. Lupardus; Mark Ultsch; Heidi J.A. Wallweber; Pawan Bir Kohli; Adam R. Johnson; Charles Eigenbrot

Significance Cytokine signaling is essential for cell growth, hematopoiesis, and immune system function. Cytokine-mediated receptor dimerization induces intracellular activation of receptor-bound Janus kinases (JAKs), which then induce downstream transcriptional responses. We have determined a two-domain crystal structure containing the pseudokinase and kinase domains from the JAK family member TYK2, which identifies an inhibitory interaction interface between the two domains. Cancer-associated mutations found in other JAK family members map to this inhibitory interaction site, whereas analogous mutations in TYK2 cause in vitro activation of the kinase. This study identifies a mechanism for pseudokinase-mediated autoinhibition of the TYK2 kinase domain and suggests a means by which cancer-associated JAK mutations induce aberrant kinase activity. Janus kinases (JAKs) are receptor-associated multidomain tyrosine kinases that act downstream of many cytokines and interferons. JAK kinase activity is regulated by the adjacent pseudokinase domain via an unknown mechanism. Here, we report the 2.8-Å structure of the two-domain pseudokinase–kinase module from the JAK family member TYK2 in its autoinhibited form. We find that the pseudokinase and kinase interact near the kinase active site and that most reported mutations in cancer-associated JAK alleles cluster in or near this interface. Mutation of residues near the TYK2 interface that are analogous to those in cancer-associated JAK alleles, including the V617F and “exon 12” JAK2 mutations, results in increased kinase activity in vitro. These data indicate that JAK pseudokinases are autoinhibitory domains that hold the kinase domain inactive until receptor dimerization stimulates transition to an active state.


Journal of Medicinal Chemistry | 2012

Identification of Imidazo-Pyrrolopyridines as Novel and Potent JAK1 Inhibitors.

Janusz Jozef Kulagowski; Wade S. Blair; Richard J. Bull; Christine Chang; Gauri Deshmukh; Hazel Joan Dyke; Charles Eigenbrot; Nico Ghilardi; Paul Gibbons; Trevor Keith Harrison; Peter R. Hewitt; Marya Liimatta; Christopher Hurley; Adam R. Johnson; Tony Johnson; Jane R. Kenny; Pawan Bir Kohli; Robert James Maxey; Rohan Mendonca; Kyle Mortara; Jeremy Murray; Raman Narukulla; Steven Shia; Micah Steffek; Savita Ubhayakar; Mark Ultsch; Anne van Abbema; Stuart Ward; Bohdan Waszkowycz; Mark Zak

A therapeutic rationale is proposed for the treatment of inflammatory diseases, such as rheumatoid arthritis (RA), by specific targeting of the JAK1 pathway. Examination of the preferred binding conformation of clinically effective, pan-JAK inhibitor 1 led to identification of a novel, tricyclic hinge binding scaffold 3. Exploration of SAR through a series of cycloamino and cycloalkylamino analogues demonstrated this template to be highly tolerant of substitution, with a predisposition to moderate selectivity for the JAK1 isoform over JAK2. This study culminated in the identification of subnanomolar JAK1 inhibitors such as 22 and 49, having excellent cell potency, good rat pharmacokinetic characteristics, and excellent kinase selectivity. Determination of the binding modes of the series in JAK1 and JAK2 by X-ray crystallography supported the design of analogues to enhance affinity and selectivity.


European Journal of Medicinal Chemistry | 2013

Lead identification of novel and selective TYK2 inhibitors.

Jun Liang; Vickie Tsui; Anne van Abbema; Liang Bao; Kathy Barrett; Maureen Beresini; Leo Berezhkovskiy; Wade S. Blair; Christine Chang; James Driscoll; Charles Eigenbrot; Nico Ghilardi; Paul Gibbons; Jason S. Halladay; Adam R. Johnson; Pawan Bir Kohli; Yingjie Lai; Marya Liimatta; Priscilla Mantik; Kapil Menghrajani; Jeremy Murray; Amy Sambrone; Yisong Xiao; Steven Shia; Young G. Shin; Jan Smith; Sue Sohn; Mark S. Stanley; Mark Ultsch; Birong Zhang

A therapeutic rationale is proposed for the treatment of inflammatory diseases, such as psoriasis and inflammatory bowel diseases (IBD), by selective targeting of TYK2. Hit triage, following a high-throughput screen for TYK2 inhibitors, revealed pyridine 1 as a promising starting point for lead identification. Initial expansion of 3 separate regions of the molecule led to eventual identification of cyclopropyl amide 46, a potent lead analog with good kinase selectivity, physicochemical properties, and pharmacokinetic profile. Analysis of the binding modes of the series in TYK2 and JAK2 crystal structures revealed key interactions leading to good TYK2 potency and design options for future optimization of selectivity.


Journal of Immunology | 2013

A Restricted Role for TYK2 Catalytic Activity in Human Cytokine Responses Revealed by Novel TYK2-Selective Inhibitors

Sue J. Sohn; Kathy Barrett; Anne van Abbema; Christine Chang; Pawan Bir Kohli; Hidenobu Kanda; Janice Smith; Yingjie Lai; Aihe Zhou; Birong Zhang; Wenqian Yang; Karen Williams; Calum Macleod; Christopher Hurley; Janusz Jozef Kulagowski; Nicholas Lewin-Koh; Hart S. Dengler; Adam R. Johnson; Nico Ghilardi; Mark Zak; Jun Liang; Wade S. Blair; Steven Magnuson; Lawren C. Wu

TYK2 is a JAK family protein tyrosine kinase activated in response to multiple cytokines, including type I IFNs, IL-6, IL-10, IL-12, and IL-23. Extensive studies of mice that lack TYK2 expression indicate that the IFN-α, IL-12, and IL-23 pathways, but not the IL-6 or IL-10 pathways, are compromised. In contrast, there have been few studies of the role of TYK2 in primary human cells. A genetic mutation at the tyk2 locus that results in a lack of TYK2 protein in a single human patient has been linked to defects in the IFN-α, IL-6, IL-10, IL-12, and IL-23 pathways, suggesting a broad role for TYK2 protein in human cytokine responses. In this article, we have used a panel of novel potent TYK2 small-molecule inhibitors with varying degrees of selectivity against other JAK kinases to address the requirement for TYK2 catalytic activity in cytokine pathways in primary human cells. Our results indicate that the biological processes that require TYK2 catalytic function in humans are restricted to the IL-12 and IL-23 pathways, and suggest that inhibition of TYK2 catalytic activity may be an efficacious approach for the treatment of select autoimmune diseases without broad immunosuppression.


Journal of Medicinal Chemistry | 2013

Lead Optimization of a 4-Aminopyridine Benzamide Scaffold To Identify Potent, Selective, and Orally Bioavailable TYK2 Inhibitors.

Jun Liang; A van Abbema; Mercedesz Balazs; Kathy Barrett; L Berezhkovsky; Wade S. Blair; Christine Chang; Donnie Delarosa; Jason DeVoss; J Driscoll; Charles Eigenbrot; Nico Ghilardi; Paul Gibbons; Jason S. Halladay; Amber E. Johnson; Pawan Bir Kohli; Yingjie Lai; Y Liu; Joseph P. Lyssikatos; Priscilla Mantik; Kapil Menghrajani; Jeremy Murray; Ivan Peng; Amy Sambrone; Steven Shia; Young G. Shin; Jan Smith; Sue Sohn; Tsui; Mark Ultsch

Herein we report our lead optimization effort to identify potent, selective, and orally bioavailable TYK2 inhibitors, starting with lead molecule 3. We used structure-based design to discover 2,6-dichloro-4-cyanophenyl and (1R,2R)-2-fluorocyclopropylamide modifications, each of which exhibited improved TYK2 potency and JAK1 and JAK2 selectivity relative to 3. Further optimization eventually led to compound 37 that showed good TYK2 enzyme and interleukin-12 (IL-12) cell potency, as well as acceptable cellular JAK1 and JAK2 selectivity and excellent oral exposure in mice. When tested in a mouse IL-12 PK/PD model, compound 37 showed statistically significant knockdown of cytokine interferon-γ (IFNγ), suggesting that selective inhibition of TYK2 kinase activity might be sufficient to block the IL-12 pathway in vivo.


Journal of Medicinal Chemistry | 2013

Identification of C-2 Hydroxyethyl Imidazopyrrolopyridines as Potent JAK1 Inhibitors with Favorable Physicochemical Properties and High Selectivity over JAK2.

Mark Zak; Christopher Hurley; Stuart Ward; Philippe Bergeron; Kathy Barrett; Mercedesz Balazs; Wade S. Blair; Richard James Bull; Paroma Chakravarty; Christine Chang; Peter Crackett; Gauri Deshmukh; Jason DeVoss; Peter S. Dragovich; Charles Eigenbrot; Charles Ellwood; Simon Gaines; Nico Ghilardi; Paul Gibbons; Stefan Gradl; Peter Gribling; Chris Hamman; Eric Harstad; Peter R. Hewitt; Adam R. Johnson; Tony Johnson; Jane R. Kenny; Michael F. T. Koehler; Pawan Bir Kohli; Sharada Shenvi Labadie

Herein we report on the structure-based discovery of a C-2 hydroxyethyl moiety which provided consistently high levels of selectivity for JAK1 over JAK2 to the imidazopyrrolopyridine series of JAK1 inhibitors. X-ray structures of a C-2 hydroxyethyl analogue in complex with both JAK1 and JAK2 revealed differential ligand/protein interactions between the two isoforms and offered an explanation for the observed selectivity. Analysis of historical data from related molecules was used to develop a set of physicochemical compound design parameters to impart desirable properties such as acceptable membrane permeability, potent whole blood activity, and a high degree of metabolic stability. This work culminated in the identification of a highly JAK1 selective compound (31) exhibiting favorable oral bioavailability across a range of preclinical species and robust efficacy in a rat CIA model.


Bioorganic & Medicinal Chemistry Letters | 2012

Structure-based discovery of C-2 substituted imidazo-pyrrolopyridine JAK1 inhibitors with improved selectivity over JAK2.

Sharada Labadie; Peter S. Dragovich; Kathy Barrett; Wade S. Blair; Philippe Bergeron; Christine Chang; Gauri Deshmukh; Charles Eigenbrot; Nico Ghilardi; Paul Gibbons; Christopher Hurley; Adam R. Johnson; Jane R. Kenny; Pawan Bir Kohli; Janusz Jozef Kulagowski; Marya Liimatta; Patrick Lupardus; Rohan Mendonca; Jeremy Murray; Rebecca Pulk; Steven Shia; Micah Steffek; Savita Ubhayakar; Mark Ultsch; Anne van Abbema; Stuart Ward; Mark Zak

Herein we describe our successful efforts in obtaining C-2 substituted imidazo-pyrrolopyridines with improved JAK1 selectivity relative to JAK2 by targeting an amino acid residue that differs between the two isoforms (JAK1: E966; JAK2: D939). Efforts to improve cellular potency by reducing the polarity of the inhibitors are also detailed. The X-ray crystal structure of a representative inhibitor in complex with the JAK1 enzyme is also disclosed.


Bioorganic & Medicinal Chemistry Letters | 2013

Novel triazolo-pyrrolopyridines as inhibitors of Janus kinase 1.

Christopher Hurley; Wade S. Blair; Richard James Bull; Christine Chang; Peter Crackett; Gauri Deshmukh; Hazel Joan Dyke; Rina Fong; Nico Ghilardi; Paul Gibbons; Peter R. Hewitt; Adam R. Johnson; Tony Johnson; Jane R. Kenny; Pawan Bir Kohli; Janusz Jozef Kulagowski; Marya Liimatta; Patrick Lupardus; Robert James Maxey; Rohan Mendonca; Raman Narukulla; Rebecca Pulk; Savita Ubhayakar; Anne van Abbema; Stuart Ward; Bohdan Waszkowycz; Mark Zak

The identification of a novel fused triazolo-pyrrolopyridine scaffold, optimized derivatives of which display nanomolar inhibition of Janus kinase 1, is described. Prototypical example 3 demonstrated lower cell potency shift, better permeability in cells and higher oral exposure in rat than the corresponding, previously reported, imidazo-pyrrolopyridine analogue 2. Examples 6, 7 and 18 were subsequently identified from an optimization campaign and demonstrated modest selectivity over JAK2, moderate to good oral bioavailability in rat with overall pharmacokinetic profiles comparable to that reported for an approved pan-JAK inhibitor (tofacitinib).


Journal of Medicinal Chemistry | 2017

Structure-Based Design of Tricyclic NF-κB Inducing Kinase (NIK) Inhibitors That Have High Selectivity over Phosphoinositide-3-kinase (PI3K)

Georgette Castanedo; Nicole Blaquiere; Maureen Beresini; Brandon J. Bravo; Hans Brightbill; Jacob Chen; Haifeng Cui; Charles Eigenbrot; Christine Everett; Jianwen Feng; Robert Godemann; Emily Gogol; Sarah G. Hymowitz; Adam R. Johnson; Nobuhiko Kayagaki; Pawan Bir Kohli; Kathleen Knüppel; Joachim Kraemer; Susan Krüger; Pui Loke; Paul A. McEwan; Christian Montalbetti; David Anthony Roberts; Myron Smith; Stefan Steinbacher; Swathi Sujatha-Bhaskar; Ryan Takahashi; Xiaolu Wang; Lawren C. Wu; Yamin Zhang

We report here structure-guided optimization of a novel series of NF-κB inducing kinase (NIK) inhibitors. Starting from a modestly potent, low molecular weight lead, activity was improved by designing a type 11/2 binding mode that accessed a back pocket past the methionine-471 gatekeeper. Divergent binding modes in NIK and PI3K were exploited to dampen PI3K inhibition while maintaining NIK inhibition within these series. Potent compounds were discovered that selectively inhibit the nuclear translocation of NF-κB2 (p52/REL-B) but not canonical NF-κB1 (REL-A/p50).

Collaboration


Dive into the Pawan Bir Kohli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge