Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pawan K. Vohra is active.

Publication


Featured researches published by Pawan K. Vohra.


Clinical Cancer Research | 2009

Analysis of ErbB Receptors in Pulmonary Carcinoid Tumors

Otis B. Rickman; Pawan K. Vohra; Bharati Sanyal; Julie A. Vrana; Marie Christine Aubry; Dennis A. Wigle; Charles F. Thomas

Purpose: This study aimed to investigate the expression of the ErbB family of receptor tyrosine kinases in pulmonary typical carcinoid and atypical carcinoid tumors and to understand the role of epidermal growth factor receptor (EGFR) signaling in pulmonary carcinoid tumor proliferation. Experimental Design: Surgically resected typical carcinoid (n = 24) and atypical carcinoid (n = 7) tumor tissues were analyzed by immunohistochemical staining for EGFR, ErbB2, ErbB3, and ErbB4. Sequencing of tumor DNA of exons 18 to 21 of the EGFR gene and the KRAS gene was carried out. Biochemical analysis of lung carcinoid cell lines was used to investigate EGFR signal transduction and response to erlotinib inhibition. Results: The analysis showed that 45.8% of typical carcinoid and 28.6% of atypical carcinoid tumors express EGFR, 100% of the tumors lack expression of ErbB2, and 100% have moderate to intense staining for ErbB3 and ErbB4. Sequencing of tumor DNA of exons 18 to 21 of the EGFR gene revealed the absence of tyrosine kinase domain mutations in these tumors. Instead, 80.6% tumors harbored a synonymous single nucleotide polymorphism in exon 20. Because EGFR and KRAS mutations tend not to be present at the same time, we sequenced the KRAS gene from pulmonary carcinoid tumor DNA and found that 100% were wild-type. Using a lung carcinoid cell line that expresses EGFR, we found that erlotinib reduced proliferation by inhibiting EGFR signal transduction. Conclusions: Our findings suggest clinical potential for the use of EGFR inhibitors in the treatment of patients with pulmonary carcinoid tumors, particularly for patients with EGFR-positive pulmonary carcinoid tumors not amenable to surgical resection.


Kidney International | 2013

Simvastatin reduces venous stenosis formation in a murine hemodialysis vascular access model

Rajiv Janardhanan; Binxia Yang; Pawan K. Vohra; Bhaskar Roy; Sarah G. Withers; Santanu Bhattacharya; Jaywant N. Mandrekar; Hyunjoon Kong; Edward B. Leof; Debabrata Mukhopadhyay; Sanjay Misra

Venous neointimal hyperplasia (VNH) is responsible for hemodialysis vascular access malfunction. Here we tested whether VNH formation occurs, in part, due to vascular endothelial growth factor-A (VEGF-A) and matrix metalloproteinase (MMP)-9 gene expression causing adventitial fibroblast transdifferentiation to myofibroblasts (α-SMA-positive cells). These cells have increased proliferative and migratory capacity leading to VNH formation. Simvastatin was used to decrease VEGF-A and MMP-9 gene expression in our murine arteriovenous fistula model created by connecting the right carotid artery to the ipsilateral jugular vein. Compared to fistulae of vehicle-treated mice, the fistulae of simvastatin-treated mice had the expected decrease in VEGF-A and MMP-9 but also showed a significant reduction in MMP-2 expression with a significant decrease in VNH and a significant increase in the mean lumen vessel area. There was an increase in terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and decreases in α-SMA density, cell proliferation, and HIF-1α and hypoxyprobe staining. This latter result prompted us to determine the effect of simvastatin on fibroblasts subjected to hypoxia in vitro. Simvastatin-treated fibroblasts had a significant decrease in myofibroblast production along with decreased cellular proliferation, migration, and MMP-9 activity but increased caspase 3 activity suggesting increased apoptosis. Thus, simvastatin results in a significant reduction in VNH, with increase in mean lumen vessel area by decreasing VEGF-A/MMP-9 pathway activity.


Clinical Cancer Research | 2009

Targeting GIPC/synectin in pancreatic cancer inhibits tumor growth

Michael H. Muders; Pawan K. Vohra; Shamit K. Dutta; Enfeng Wang; Yasuhiro Ikeda; Ling Wang; D. Gomika Udugamasooriya; Adnan Memic; Chamila N. Rupashinghe; Gustavo Baretton; Daniela Aust; Silke Langer; Kaustubh Datta; Michael Simons; Mark R. Spaller; Debabrata Mukhopadhyay

Purpose: Various studies have shown the importance of the GAIP interacting protein, COOH-terminus (GIPC, also known as Synectin) as a central adaptor molecule in different signaling pathways and as an important mediator of receptor stability. GIPC/Synectin is associated with different growth-promoting receptors such as insulin-like growth factor receptor I (IGF-IR) and integrins. These interactions were mediated through its PDZ domain. GIPC/Synectin has been shown to be overexpressed in pancreatic and breast cancer. The goal of this study was to show the importance of GIPC/Synectin in pancreatic cancer growth and to evaluate a possible therapeutic strategy by using a GIPC-PDZ domain inhibitor. Furthermore, the effect of targeting GIPC on the IGF-I receptor as one of its associated receptors was tested. Experimental Design: The in vivo effects of GIPC/Synectin knockdown were studied after lentiviral transduction of luciferase-expressing pancreatic cancer cells with short hairpin RNA against GIPC/Synectin. Additionally, a GIPC-PDZ–targeting peptide was designed. This peptide was tested for its influence on pancreatic cancer growth in vitro and in vivo. Results: Knockdown of GIPC/Synectin led to a significant inhibition of pancreatic adenocarcinoma growth in an orthotopic mouse model. Additionally, a cell-permeable GIPC-PDZ inhibitor was able to block tumor growth significantly without showing toxicity in a mouse model. Targeting GIPC was accompanied by a significant reduction in IGF-IR expression in pancreatic cancer cells. Conclusions: Our findings show that targeting GIPC/Synectin and its PDZ domain inhibits pancreatic carcinoma growth and is a potential strategy for therapeutic intervention of pancreatic cancer.


Journal of Cell Science | 2009

Dopamine regulates phosphorylation of VEGF receptor 2 by engaging Src-homology-2-domain-containing protein tyrosine phosphatase 2

Sutapa Sinha; Pawan K. Vohra; Resham Bhattacharya; Shamit K. Dutta; Shirshendu Sinha; Debabrata Mukhopadhyay

Vascular endothelial growth factor (VEGF)-induced receptor phosphorylation is the crucial step for initiating downstream signaling pathways that lead to angiogenesis or related pathophysiological outcomes. Our previous studies have shown that the neurotransmitter dopamine could inhibit VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR-2), endothelial cell proliferation, migration, microvascular permeability, and thus, angiogenesis. In this study, we address the mechanism by which VEGFR-2 phosphorylation is regulated by dopamine. Here, we demonstrate that D2 dopamine receptor (D2DR) colocalizes with VEGFR-2 at the cell surface. Dopamine pretreatment increases the translocation and colocalization of Src-homology-2-domain-containing protein tyrosine phosphatase (SHP-2) with D2DR at the cell surface. Dopamine administration leads to increased VEGF-induced phosphorylation of SHP-2 and this increased phosphorylation parallels the increased phosphatase activity of SHP-2. Active SHP-2 then dephosphorylates VEGFR-2 at Y951, Y996 and Y1059, but not Y1175. We also observe that SHP-2 knockdown impairs the dopamine-regulated inhibition of VEGF-induced phosphorylation of VEGFR-2 and, subsequently, Src phosphorylation and migration. Our data establish a novel role for SHP-2 phosphatase in the dopamine-mediated regulation of VEGFR-2 phosphorylation.


Kidney International | 2014

Adventitial transduction of lentivirus-shRNA-VEGF-A in arteriovenous fistula reduces venous stenosis formation

Binxia Yang; Rajiv Janardhanan; Pawan K. Vohra; Eddie L. Greene; Santanu Bhattacharya; Sarah G. Withers; Bhaskar Roy; Evelyn C. Nieves Torres; Jayawant N. Mandrekar; Edward B. Leof; Debabrata Mukhopadhyay; Sanjay Misra

Venous neointimal hyperplasia (VNH) causes hemodialysis vascular access failure. Here we tested whether VNH formation occurs in part due to local vessel hypoxia caused by surgical trauma to the vasa vasorum of the outflow vein at the time of arteriovenous fistula placement. Selective targeting of the adventitia of the outflow vein at the time of fistula creation was performed using a lentivirus-delivered small-hairpin RNA that inhibits VEGF-A expression. This resulted in significant increase in mean lumen vessel area, decreased media/adventitia area, and decreased constrictive remodeling with a significant increase in apoptosis (increase in caspase 3 activity and TUNEL staining) accompanied with decreased cellular proliferation and hypoxia-inducible factor-1α at the outflow vein. There was significant decrease in cells staining positive for α-smooth muscle actin (a myofibroblast marker) and VEGFR-1 expression with a decrease in MMP-2 and MMP-9. These results were confirmed in animals that were treated with humanized monoclonal antibody to VEGF-A with similar results. Since hypoxia can cause fibroblast to differentiate into myofibroblasts, we silenced VEGF-A gene expression in fibroblasts and subjected them to hypoxia. This decreased myofibroblast production, cellular proliferation, cell invasion, MMP-2 activity, and increased caspase 3. Thus, VEGF-A reduction at the time of arteriovenous fistula placement results in increased positive vascular remodeling.


Biochimica et Biophysica Acta | 2013

TRPC3 Regulates Release of Brain-Derived Neurotrophic Factor From Human Airway Smooth Muscle

Pawan K. Vohra; Michael A. Thompson; Venkatachalem Sathish; Alexander Kiel; Calvin R. Jerde; Christina M. Pabelick; Brij B. Singh; Y. S. Prakash

Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.


Molecular Cancer Research | 2011

A Lipid-Modified Estrogen Derivative that Treats Breast Cancer Independent of Estrogen Receptor Expression through Simultaneous Induction of Autophagy and Apoptosis

Sutapa Sinha; Sayantani Roy; Bathula Surendar Reddy; Krishnendu Pal; Godeshala Sudhakar; Seethalakshmi Iyer; Shamit K. Dutta; Enfeng Wang; Pawan K. Vohra; Karnati R. Roy; Pallu Reddanna; Debabrata Mukhopadhyay; Rajkumar Banerjee

It is a challenge to develop a universal single drug that can treat breast cancer at single- or multiple-stage complications, yet remains nontoxic to normal cells. The challenge is even greater when breast cancer–specific, estrogen-based drugs are being developed that cannot act against multistaged breast cancer complications owing to the cells differential estrogen receptor (ER) expression status and their possession of drug-resistant and metastatic phenotypes. We report here the development of a first cationic lipid-conjugated estrogenic derivative (ESC8) that kills breast cancer cells independent of their ER expression status. This ESC8 molecule apparently is nontoxic to normal breast epithelial cells, as well as to other noncancer cells. ESC8 induces apoptosis through an intrinsic pathway in ER-negative MDA-MB-231 cells. In addition, ESC8 treatment induces autophagy in these cells by interfering with the mTOR activity. This is the first example of an estrogen structure–based molecule that coinduces apoptosis and autophagy in breast cancer cells. Further in vivo study confirms the role of this molecule in tumor regression. Together, our results open new perspective of breast cancer chemotherapy through a single agent, which could provide the therapeutic benefit across all stages of breast cancer. Mol Cancer Res; 9(3); 364–74. ©2011 AACR.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

Caveolin-1 knockout mice exhibit airway hyperreactivity

Bharathi Aravamudan; Sarah K. VanOosten; Lucas W. Meuchel; Pawan K. Vohra; Michael A. Thompson; Gary C. Sieck; Y. S. Prakash; Christina M. Pabelick

Caveolae are flask-shaped plasma membrane invaginations expressing the scaffolding caveolin proteins. Although caveolins have been found in endothelium and epithelium (where they regulate nitric oxide synthase activity), their role in smooth muscle is still under investigation. We and others have previously shown that caveolae of human airway smooth muscle (ASM), which express caveolin-1, contain Ca(2+) and force regulatory proteins and are involved in mediating the effects of inflammatory cytokines such as TNF-α on intracellular Ca(2+) concentration responses to agonist. Accordingly, we tested the hypothesis that in vivo, absence of caveolin-1 leads to reduced airway hyperresponsiveness, using a knockout (KO) (Cav1 KO) mouse and an ovalbumin-sensitized/challenged (OVA) model of allergic airway hyperresponsiveness. Surprisingly, airway responsiveness to methacholine, tested by use of a FlexiVent system, was increased in Cav1 KO control (CTL) as well as KO OVA mice, which could not be explained by a blunted immune response to OVA. In ASM of wild-type (WT) OVA mice, expression of caveolin-1, the caveolar adapter proteins cavins 1-3, and caveolae-associated Ca(2+) and force regulatory proteins such as Orai1 and RhoA were all increased, effects absent in Cav1 KO CTL and OVA mice. However, as with WT OVA, both CTL and OVA Cav1 KO airways showed signs of enhanced remodeling, with high expression of proliferation markers and increased collagen. Separately, epithelial cells from airways of all three groups displayed lower endothelial but higher inducible nitric oxide synthase and arginase expression. Arginase activity was also increased in these three groups, and the inhibitor nor-NOHA (N-omega-nor-l-arginine) enhanced sensitivity of isolated tracheal rings to ACh, especially in Cav1 KO mice. On the basis of these data disproving our original hypothesis, we conclude that caveolin-1 has complex effects on ASM vs. epithelium, resulting in airway hyperreactivity in vivo mediated by altered airway remodeling and bronchodilation.


FEBS Letters | 2003

Complementation and characterization of the Pneumocystis carinii MAPK, PCM

Pawan K. Vohra; Veenu Puri; Charles F. Thomas

Mitogen‐activated protein kinase (MAPK) pathways transfer environmental signals into intracellular events such as proliferation and differentiation. Fungi utilize a specific pheromone‐induced MAPK pathway to regulate conjugation, formation of an ascus, and entry into meiosis. We have previously identified a MAPK, PCM, from the fungal opportunist Pneumocystis, responsible for causing severe pneumonia in patients with AIDS. In order to gain insight into the function of PCM, we expressed it in Saccharomyces cerevisiae deficient in pheromone signaling and tested activation and inhibition of this MAPK pathway. PCM restored pheromone signaling in S. cerevisiae fus3Δ kss1Δ mutants with α‐factor pheromone (six‐fold increase) and was not activated by osmotic stress. Signaling through this pathway decreased 2.5‐fold with 10 μM U0126, and was unaffected with SB203580. We evaluated the conditions for native PCM kinase activity isolated from Pneumocystis carinii organisms and found that 0.1 mM MgCl2, pH 6.5, temperature 30–35°C, and 10 μM ATP were optimal. The activity of PCM is significantly elevated in P. carinii trophic forms compared to cysts, implicating a role for PCM in the life cycle transition of P. carinii from trophic forms to cysts.


Gene | 2003

Pneumocystis carinii STE11, an HMG-box protein, is phosphorylated by the mitogen activated protein kinase PCM

Pawan K. Vohra; Veenu Puri; Theodore J. Kottom; Andrew H. Limper; Charles F. Thomas

A pheromone-induced mitogen activated protein kinase (MAPK) pathway controls mating in fungi by regulating gene transcription. In the opportunistic fungus Pneumocystis carinii, we have identified a protein containing a high-mobility group (HMG) motif which is homologous to the transcriptional activators STE11 of Schizosaccharomyces pombe and STE12 of Saccharomyces cerevisiae. In fungi, this transcriptional activator functions in sexual development, filamentous growth, and pathogenicity. The fungal pheromone-activated MAPK phosphorylates the transcriptional activator to allow binding to pheromone-response elements in the promoter regions of certain genes. We have previously identified a P. carinii MAPK, PCM, which has significant homology to fungal MAPKs involved in mating. As an initial step in understanding the downstream molecules which interact with the PCM kinase, we have cloned a STE11 homologue in P. carinii. PCSTE11 has an open-reading frame of 1.5 kb which encodes a protein of 501 amino acids with a molecular weight of 56 kDa. Greatest homology was to S. pombe STE11 (52%). We have expressed a His-tag fusion of PCSTE11 and purified the protein with nickel affinity resin. PCM phosphorylates the purified protein indicating that PCSTE11 is associated with the MAPK cascade in P. carinii.

Collaboration


Dive into the Pawan K. Vohra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge